WANG Ziqi, FAN Kai, ZHANG Junjian, FENG Zhihua. Numerical simulation of piezoelectric bimorph mirror control strategy applied to synchrotron radiation[J]. Journal of Applied Optics, 2022, 43(1): 23-29. DOI: 10.5768/JAO202243.0101004
Citation: WANG Ziqi, FAN Kai, ZHANG Junjian, FENG Zhihua. Numerical simulation of piezoelectric bimorph mirror control strategy applied to synchrotron radiation[J]. Journal of Applied Optics, 2022, 43(1): 23-29. DOI: 10.5768/JAO202243.0101004

Numerical simulation of piezoelectric bimorph mirror control strategy applied to synchrotron radiation

More Information
  • Received Date: June 02, 2021
  • Revised Date: November 24, 2021
  • Available Online: December 08, 2021
  • In order to improve the control degree of freedom and surface shape accuracy of the piezoelectric bimorph mirror (PBM) in synchrotron radiation, and to solve the problem of abnormal fluctuations of the calculated voltages (overfitting) affected by noise caused by the excessive number of piezoelectric actuation units, the PBM model was established and simulation control was carried out. The 36 sets of piezoelectric response equations were obtained through the finite element simulation, and the mathematical model of surface shape and voltage was constructed. To compensate the mirror surface distortion caused by gravity, the control effects of two voltage solutions using least square method (LSM) and Tikhonov regularization were analyzed and compared by obtained ellipse shape. The results show that after using Tikhonov regularization inversion, the surface shape control error is reduced by 21.7% compared with LSM, and the maximum voltage fluctuation between adjacent electrodes is reduced from 1.019 kV to 0.174 kV, which meet the actual requirements of engineering. The system is robust to tested noise, and has more superior application value than LSM.

  • [1]
    马礼敦, 杨福家. 同步辐射应用概论[M]. 上海: 复旦大学出版社, 2001: 5-13.

    MA Lidun, YANG Fujia. Introduction to synchrotron radiation applications[M]. Shanghai: Fudan University Press, 2001: 5-13.
    [2]
    徐朝银. 同步辐射光学与工程[M]. 合肥: 中国科学技术大学出版社, 2013: 1-23.

    XU Chaoyin. Optics and engineering of synchrotron radiation[M]. Hefei: Press of University of Science and Technology of China, 2013: 1-23.
    [3]
    张瑶, 汤善治, 李明, 等. 同步辐射中双压电片反射镜的研究现状[J]. 物理学报,2016,65(1):1-12.

    ZHANG Yao, TANG Shanzhi, LI Ming, et al. Present research status of piezoelectric bimorph mirrors in synchrotron radiation sources[J]. Acta Physica Sinica,2016,65(1):1-12.
    [4]
    SNIGIREV A, KOHN V, SNIGIREVA I, et al. A compound refractive lens for focusing high-energy X-rays[J]. Nature,1998,384(6604):49-51.
    [5]
    KESKINBORA K, ROBISCH A L, MAYER M, et al. Multilayer Fresnel zone plates for high energy radiation resolve 21 nm features at 1.2 keV[J]. Optics Express,2014,22(15):18440-18453. doi: 10.1364/OE.22.018440
    [6]
    潘要霖. 亚微米聚焦高稳定柔性铰链压弯机构的模拟分析[D]. 上海: 中国科学院研究生院(上海应用物理研究所), 2017.

    PAN Yaolin. Simulation and analysis of a high stability flexure bending mechanism for submicron focusing[D]. Shanghai: The University of Chinese Academy of Science (Shanghai Institute of Applied Physics), 2017.
    [7]
    程光宇, 黄智超, 王克逸, 等. 同步辐射聚焦镜压弯机构设计与面形误差分析[J]. 应用光学,2019,40(1):120-126.

    CHENG Guangyu, HUANG Zhichao, WANG Keyi, et al. Design and surface shape error analysis of synchronous radiation focusing mirror bending mechanism[J]. Journal of Applied Optics,2019,40(1):120-126.
    [8]
    YAO Z, MING L, TANG S, et al. Analysis of an X-ray mirror made from piezoelectric bimorph[J]. Nuclear Instruments & Methods in Physics Research,2017,860(11):13-18.
    [9]
    LIBU M, SUSANTH S, VASANTHAKUMARI K G, et al. Influence of piezoceramic to fused silica plate thickness on the radii of curvature of piezoelectric bimorph mirror[J]. Review of Scientific Instruments,2012,83(1):4001.
    [10]
    SUSINI J, LABERGERIE D, ZHANG L. Compact active/adaptive X-ray mirror: bimorph piezoelectric flexible mirror[J]. Review of Scientific Instruments,1995,66(2):2229-2231. doi: 10.1063/1.1145715
    [11]
    ALCOCK S G, NISTEA I, SUTTER J P, et al. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines[J]. Journal of Synchrotron Radiation,2015,22(1):10-15. doi: 10.1107/S1600577514020025
    [12]
    NAKAMORI H, MATSUYAMA S, IMAI S, et al. X-ray nanofocusing using a piezoelectric deformable mirror and at-wavelength metrology methods[J]. Nuclear Instruments & Methods in Physics Research,2013,710(11):93-97.
    [13]
    田纳玺, 蒋晖, 李爱国, 等. 用于同步辐射的硬X射线相位补偿镜的研究[J]. 光学学报,2020,40(9):233-239.

    TIAN Naxi, JIANG Hui, LI Aiguo, et al. Study on phase compensation mirror used for hard X-ray synchrotron radiation[J]. Acta Optica Sinica,2020,40(9):233-239.
    [14]
    ALCOCK S G, SUTTER J P, SAWHNEY K, et al. Bimorph mirrors: the good, the bad, and the ugly[J]. Nuclear Instruments and Methods in Physics Research Section A,2013,710(11):87-92.
    [15]
    RONG H. The inverse problem of bimorph mirror tuning on a beamline[J]. Journal of Synchrotron Radiation,2011,18(6):930-937. doi: 10.1107/S0909049511036648
    [16]
    MATSUYAMA S, NAKAMORI H, GOTO T, et al. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors[J]. Scientific Reports,2016,6(1):24801. doi: 10.1038/srep24801
    [17]
    ALCOCK S G, NISTEA I T, SIGNORATO R, et al. Dynamic adaptive X-ray optics: Part I Time-resolved optical metrology investigation of the bending behaviour of piezoelectric bimorph deformable X-ray mirrors[J]. Journal of Synchrotron Radiation,2019,26(1):36-44. doi: 10.1107/S1600577518015953
    [18]
    ALCOCK S G, NISTEA I T, SIGNORATO R, et al. Dynamic adaptive X-ray optics: Part II High-speed piezoelectric bimorph deformable Kirkpatrick–Baez mirrors for rapid variation of the 2D size and shape of X-ray beams[J]. Journal of Synchrotron Radiation,2019,26(1):45-51. doi: 10.1107/S1600577518015965
    [19]
    SUTTER J P, AMBOAGE M, HAYAMA S, et al. Geometrical and wave-optical effects on the performance of a bent-crystal dispersive X-ray spectrometer[J]. Nuclear Instruments & Methods in Physics Research,2010,621(1/2/3):627-636.
    [20]
    SUTTER J P, ALCOCK S G, KASHYAP Y, et al. Creating flat-top X-ray beams by applying surface profiles of alternating curvature to deformable piezo bimorph mirrors[J]. Journal of Synchrotron Radiation,2016,23(6):1333-1347. doi: 10.1107/S1600577516013308
    [21]
    DIAO W, PAN Q, FENG Z. Static characteristics of piezoelectric ceramics under high compressive stress[J]. Ferroelectrics,2020,558(1):165-174.
    [22]
    梁彦, 徐林峰, 吉瑞萍. 最优估计理论与应用: 最小二乘估计[M]. 西安: 西北工业大学出版社, 2019: 1-16.

    LIANG Yan, XU Linfeng, JI Ruiping. Theory and application of optimal estimation: least squares estimation[M]. Xi’an: Northwestern Polytechnical University Press, 2019: 1-16.
    [23]
    XING J, CHEN X X, MA L. Bathymetry inversion using the modified gravity-geologic method: application of the rectangular prism model and Tikhonov regularization[J]. Applied Geophysics,2020,17(3):377-389. doi: 10.1007/s11770-020-0821-y
    [24]
    张慧. 求解线性离散不适定问题的改进Tikhonov算法[D]. 南京: 南京航空航天大学, 2015.

    ZHANG Hui. The improved Tikhonov algorithms for solving linear discrete ill-posed problems[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.
    [25]
    夏超男. 基于L曲线的正则化参数选取研究[D]. 广州: 暨南大学, 2016.

    XIA Chaonan. Study on regularization parameter choice based on the L-curve[D]. Guangzhou: Jinan University, 2016.
  • Related Articles

    [1]HE Dahua, CHENG Pu, LI Yangyang. Monte Carlo method for solving underwater light field[J]. Journal of Applied Optics, 2023, 44(2): 268-274. DOI: 10.5768/JAO202344.0201005
    [2]ZHANG Ying, LI Song, ZHANG Wenhao, LUO Min. Vegetation canopy height inversion method based on spaceborne laser altimetry system[J]. Journal of Applied Optics, 2020, 41(4): 697-703. DOI: 10.5768/JAO202041.0407002
    [3]HUANG Zhuqing, HU Qingsong, HUANG Zhangjun, TANG Zhenzhou, YUAN Zhichao. Optimization of steam humidity measurement inversion algorithm based on back angle scattering method[J]. Journal of Applied Optics, 2019, 40(4): 612-619. DOI: 10.5768/JAO201940.0402005
    [4]Ren Zhibin, Hu Jiasheng, Tang Honglang, Jin Xin. Solving method of object data based on imaging matrix[J]. Journal of Applied Optics, 2018, 39(1): 40-44. DOI: 10.5768/JAO201839.0101007
    [5]LI Yu, GAO Jiao-bo, MENG He-min, ZHANG Lei, ZHANG Ming-xuan. Fast inversion techniques of inteferogram imaging spectrum based on CUDA[J]. Journal of Applied Optics, 2014, 35(3): 414-419.
    [6]YANG Ye-ping, HOU Min, LI Gao-ping, YANG Bin, YU Shuai. Pyroelectric laser energy meter used in non-regular ambient environment[J]. Journal of Applied Optics, 2012, 33(4): 752-755.
    [7]ZHOU Zhi-feng. Visual detection of regular hexagon[J]. Journal of Applied Optics, 2012, 33(1): 129-133.
    [8]WANG Xue-yan, LIU Chan-lao. Inversion algorithm of laser particle size test based on Projection algorithm[J]. Journal of Applied Optics, 2011, 32(2): 367-372.
    [9]CHEN Shu-jing, MA Tian-cai. Infrared imaging denoising processing based on regulargranule resampling algorithm[J]. Journal of Applied Optics, 2009, 30(6): 1028-1031.
    [10]HE Zong-pin, ZHAO Wen-cai, WANG Peng, HAO Pei-ming. A Method of Solving the Initial Structure of a Three-thin-lens Null Corrector[J]. Journal of Applied Optics, 2004, 25(1): 21-23.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (616) PDF downloads (49) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return