Optical properties of combined dynamic thermal dynamicloading optical window
-
Graphical Abstract
-
Abstract
Aiming at the large aperture optical window working in the complex environment such as pressure difference and temperature gradient, a combination scheme of optical window was proposed, which was composed of optical glass and acrylic plate. Based on the thermal-optical analysis, the overall strength and thermal environment of optical window were analyzed and calculated theoretically, and the minimum thickness of optical window glass was obtained. The pressure field and axial temperature field were mapped to three-dimensional structure model by finite element software. The surface shape change and imaging quality evaluation index of 380 mm diameter optical window under different glass thickness were calculated. The simulation results were verified by corresponding environmental tests. The results show that the thickness of large aperture optical window with K9 optical glass as raw material is not less than 32.5 mm under this working environment; when the thickness of optical window is 35 mm, the thermodynamic effect can be ignored. Therefore, the large aperture combined optical window of 35 mm can not only meet the intensity, but also meet the imaging quality requirements of multi-spectral camera, which provides a basis for the design of this kind of window.
-
-