Citation: | CHENG Hongchang, SHI Feng, LI Zhoukui, SHI Hongli, BAI Xiaofeng, YAN Lei, YAO Ze, WANG Miaoxin, LI Yanhong. Preliminary study on distinguishment method of low-level-light night vision devices[J]. Journal of Applied Optics, 2021, 42(6): 1092-1101. DOI: 10.5768/JAO202142.0604001 |
[1] |
周立伟, 刘玉岩. 目标探测与识别[M]. 北京: 北京理工大学出版社, 2002: 79-100.
ZHOU Liwei, LIU Yuyan. Object detection and origin[M]. BeiJing: BeiJing Institute of Technology Press, 2002: 79-P100.
|
[2] |
向世明, 倪国强. 光电子成像器件原理[M]. 北京: 国防工业出版社, 1999: 6-10.
XIANG Shiming, NI Guoqiang. The principle of photoelectronic imaging devices[M]. Beijing: National Defense Industry Press, 1999: 6-10.
|
[3] |
常本康. GaAs基光电阴极[M]. 北京: 科学出版社, 2017: 1-13.
CHANG Benkang. GaAs based photocathodes[M]. BeiJing: science Press, 2017: 1-13.
|
[4] |
石峰, 程宏昌, 闫磊, 等. 紫外探测技术[M]. 北京: 国防工业出版社, 2017: 132-175.
SHI Feng, CHENG Hongchang, YAN Lei, et al. UV detection technique[M]. BeiJing: National Defense Industry Press, 2017: 132-175.
|
[5] |
张敬贤, 李玉丹, 金伟其. 微光与红外成像技术[M]. 北京: 北京理工大学出版社, 1995: 29-35.
ZHANG Jingxian, LI Yudan, JIN Weiqi. Low-light-level and infrared imaging technology[M]. BeiJing: BeiJing Institute of Technology Press, 1995: 29-35.
|
[6] |
常本康. GaN基光电阴极[M]. 北京: 科学出版社, 2018: 13-17.
CHANG Benkang. GaAs based photocathodes[M]. BeiJing: Science press, 2018: 13-P17.
|
[7] |
贾欣志. 负电子亲和势光电阴极及应用[M]. 北京: 国防工业出版社, 2013: 207-224.
JIA Xinzhi. Negative electron afinity photocathodes and applications[M]. Beijing: National Defense Industry Press, 2013: 207-224.
|
[8] |
姚立斌. 低照度CMOS图像传感器技术[J]. 红外技术,2013,35(3):125-132.
YAO Libin. Low-light-level cmos image sensor technique[J]. Infrared Technology,2013,35(3):125-132.
|
[9] |
韩露, 熊平. EMCCD工作原理及性能分析[J]. 传感器世界,2009,15(5):24-28. doi: 10.3969/j.issn.1006-883X.2009.05.004
HAN Lu, XIONG Ping. The analysis of operating principle and performance of EMCCD[J]. Sensor World,2009,15(5):24-28. doi: 10.3969/j.issn.1006-883X.2009.05.004
|
[10] |
刘亚宁, 桑鹏, 吕嘉玮, 等. 微型低功耗EBAPS相机技术[J]. 红外技术,2019,41(9):810-818.
LIU Yaning, SANG Peng, LYU Jiawei, et al. Miniature low power consumption EBAPS camera technology[J]. Infrared Technology,2019,41(9):810-818.
|
[11] |
AEBI V W, COSTELLO K A, ARCUNI P W, et al. EBAPS: Next generation, low power, digital night vision[C]. [S.l.]: OPTRO 2005 International Symposium, 2005: 1-10.
|
[12] |
ESTRERA J P, BENDER E J, GIORDANA A, et al. Long lifetime generation IV image intensifiers with unfilmed microchannel plate[J]. SPIE, 2000, 4128: 46-53.
|
[13] |
THOMAS N I. System performance advances of 18-mm and 16-mm subminiature image intensifier sensors[J].SPIE, 2000, 4128: 54-64.
|
[14] |
RICHARDSON D. Technology for tomorrow’s night vision[J]. Armada International,1997(4):32-37.
|
[15] |
周立伟. 关于微光像增强器的品质因数[J]. 红外与激光工程,2004,33(4):331-337. doi: 10.3969/j.issn.1007-2276.2004.04.001
ZHOU Liwei. On figure of merit of low light level image intensifiers[J]. Infrared and Laser Engineering,2004,33(4):331-337. doi: 10.3969/j.issn.1007-2276.2004.04.001
|
[16] |
金伟其, 刘广荣, 王霞, 等. 微光像增强器的进展及分代方法[J]. 光学技术,2004,30(4):460-463. doi: 10.3321/j.issn:1002-1582.2004.04.019
JIN Weiqi, LIU Guangrong, WANG Xia, et al. Image intensifier's progress and division of generations[J]. Optical Technique,2004,30(4):460-463. doi: 10.3321/j.issn:1002-1582.2004.04.019
|
[17] |
潘京生. 像增强器的迭代性能及其评价标准[J]. 红外技术,2020,42(6):509-518. doi: 10.3724/SP.J.7102068585
PAN Jingsheng. Image intensifier upgraded performance and evaluation standard[J]. Infrared Technology,2020,42(6):509-518. doi: 10.3724/SP.J.7102068585
|
[1] | SHEN Wei, SHEN Wei, HU Xin, WAN Xiaojin, YU Hao, XU Yingwen, HU Chengyong, DENG Chuanlu, HUANG Yi. Research on Φ-OTDR disturbance localization method based on differential SG-NLM algorithm[J]. Journal of Applied Optics, 2025, 46(2): 319-326. DOI: 10.5768/JAO202546.0202004 |
[2] | CHEN Qingjiang, WANG Qiaoying. Image deblurring based on multiple local residual connection attention network[J]. Journal of Applied Optics, 2023, 44(2): 337-344. DOI: 10.5768/JAO202344.0202006 |
[3] | ZHANG Xinwei, LI Jun, ZHANG Dingbo, YAN Ruijin, TIAN Biao, DING Guoshen, YIN Heyi, MA Tian, WANG Weifeng, ZHAI Xiaowei. Real-time positioning technology of train based on optical fiber coherent Rayleigh backscattering[J]. Journal of Applied Optics, 2022, 43(5): 994-1000. DOI: 10.5768/JAO202243.0508001 |
[4] | WANG Gang, XIAO Yufeng, ZHENG Youneng, TIAN Xinghao. Reconstruction and localization of radioactive area fusing images from Kinect and γ camera[J]. Journal of Applied Optics, 2020, 41(5): 965-972. DOI: 10.5768/JAO202041.0502005 |
[5] | Miao Lijun, Che Ziyuan. Visual locating of mobile robot based on adaptive down sampling[J]. Journal of Applied Optics, 2017, 38(3): 429-433. DOI: 10.5768/JAO201738.0302008 |
[6] | Li Xiao-lei, Pan Jin-xiao, Liu Bin, Chen Ping, Wei Jiao-tong. Detection algorithm of assembly coaxality in local imaging[J]. Journal of Applied Optics, 2016, 37(1): 96-99. DOI: 10.5768/JAO201637.0103005 |
[7] | YAN De-ke, SUN Chuan-dong, FENG Li, HE Hao-dong, ZHU Shao-lan. ADesign of driving system for high power and narrowpulse-width semiconductor laser[J]. Journal of Applied Optics, 2011, 32(1): 165-169. |
[8] | WANG Lei, LI Gao-ping, YANG Zhao-jin, YANG Hong-ru, LIANG Yan-xi. Research on metrology method for laser power and energy[J]. Journal of Applied Optics, 2006, 27(supp): 41-46. |
[9] | LIANG Yan-xi. Development Analysis of Optoelectronic Integer Integrated Technology and Optoelectronic System[J]. Journal of Applied Optics, 2005, 26(1): 1-3. |
[10] | JIAO Bin-liang, ZHENG Sheng-xuan. Progress in Optical Current Transducer Technique for Power Systems[J]. Journal of Applied Optics, 2004, 25(6): 47-53. |
1. |
姚东,高波,宋英政,李群,高贵龙. 激光瞬态光栅激励下结构的超声响应特性研究. 光子学报. 2022(09): 225-235 .
![]() | |
2. |
周航,张斌,冯其波,崔建英,梁晨,黄悦朗. 环形光源激发超声进行缺陷检测的数值研究. 激光技术. 2021(02): 168-173 .
![]() | |
3. |
徐志祥,王铮恭,黄义敏,王雨. 激光超声检测带过渡圆角平板表面缺陷的数值研究. 应用光学. 2020(01): 214-219 .
![]() | |
4. |
张智望,王强,谷小红,赵亚,吴琳琳,朱凯. 基于分布式光纤的埋地自来水管多点泄漏定位方法分析. 应用光学. 2020(01): 228-234 .
![]() | |
5. |
徐志祥,杨帆,关守岩,李连福. 基于表面波增强效应的圆柱表面缺陷检测方法研究. 激光与红外. 2020(10): 1183-1189 .
![]() | |
6. |
徐志祥,王铮恭,王雨,黄义敏. 激光激发超声波检测带涂层铝板的表面缺陷. 机械工程与自动化. 2019(05): 162-163+166 .
![]() |