ZHANG Lanlan, GUO Xinsheng, SHOU Shaojun, ZHAO Chuangshe, HAN Wei, LIU Hu. Photoelectric pod drift calibration method based on navigation system[J]. Journal of Applied Optics, 2021, 42(6): 975-981. DOI: 10.5768/JAO202142.0601005
Citation: ZHANG Lanlan, GUO Xinsheng, SHOU Shaojun, ZHAO Chuangshe, HAN Wei, LIU Hu. Photoelectric pod drift calibration method based on navigation system[J]. Journal of Applied Optics, 2021, 42(6): 975-981. DOI: 10.5768/JAO202142.0601005

Photoelectric pod drift calibration method based on navigation system

More Information
  • Received Date: May 16, 2021
  • Revised Date: September 22, 2021
  • Available Online: October 22, 2021
  • The accuracy of stability control is an important indicator of photoelectric pod system. In order to reduce the effect of gyro drift on stability accuracy in stabilized sighting control, the gyro drift needs to be compensated. A method of drift measurement and compensation was introduced for the photoelectric pod based on the navigation system, which was designed to calculate the component of earth rotation in the platform by the position and attitude data of airborne navigation system and pod angle during drift measurement phase of photoelectric pod, so as to obtain a more accurate gyro error. And in the stable phase, the gyro error and earth rotation component were compensated respectively by the navigation system. This method could effectively separate the earth rotation component and gyro error in the gyro drift measurement stage and adjust earth rotation component in the stable stage, so that the stability precision of stabilized sighting system could be improved. The experimental results show that, by comparing the results of 10-minute traditional drift measurement and drift measurement based on the navigation system, the accumulated drift error is stably controlled, the pitch angle is reduced from 1.80° in traditional method to 0.04°, and the heading angle is reduced from 0.77° to 0.04°.
  • [1]
    郭富强, 于波, 江叔华. 陀螺稳定装置及其应用[M]. 西安: 西北工业大学出版社, 1995: 115-118.

    GUO Fuqiang, YU Bo, JIANG Shuhua. Gyro stabilization device and its application[M]. Xi'an: Northwestern Polytechnic University Press, 1995: 115-118.
    [2]
    熊伟, 谢剑薇, 刘德生, 等. 光电跟踪控制系统导论[M]. 北京: 国防工业出版社, 2009: 4-6.

    XIONG Wei, XIE Jianwei, LIU Desheng, et al. Introduction to opto-electronic tracking and control system[M]. Bejing: National Defense Industry Press, 2009: 4-6.
    [3]
    张宗麟. 惯性导航与组合导航[M]. 北京: 航空工业出版社, 2000: 183.

    ZHANG Zonglin. Inertial navigation and integrated navigation[M]. Beijing: Aviation Industry Press, 2000: 183.
    [4]
    梁洁. 惯性稳瞄系统瞄准线漂移测试技术研究[D]. 西安: 西安工业大学, 2012.

    LIANG Jie. Testing technology research on the line-of-sight drift of inertial stabilized sighting system[D]. Xi'an: Xi'an Technological University, 2012.
    [5]
    任元斌, 吴玉敬, 韩瑞, 等. 光电稳瞄系统的瞄准线姿态补偿算法[J]. 兵器装备工程学报,2018,39(5):129-133. doi: 10.11809/bqzbgcxb2018.05.028

    REN Yuanbin, WU Yujing, HAN Rui, et al. Line of sight attitude compensation algorithm of photoelectric stabilizing platform[J]. Journal of Ordnance Equipment Engineering,2018,39(5):129-133. doi: 10.11809/bqzbgcxb2018.05.028
    [6]
    高伟伟, 王广龙, 高凤岐, 等. 一种基于速度加姿态匹配传递对准的稳瞄稳向方法[J]. 弹箭与制导学报,2013,33(2):19-22. doi: 10.3969/j.issn.1673-9728.2013.02.006

    GAO Weiwei, WANG Guanglong, GAO Fengqi, et al. A stable targeting method based on transfer alignment of speed and attitude matching[J]. Journal of Projectiles’ Rockets’ Missiles and Guidance,2013,33(2):19-22. doi: 10.3969/j.issn.1673-9728.2013.02.006
    [7]
    沈颖凡, 赵嫔娅, 陈祖金. 航空吊舱稳定平台结构设计[J]. 航空兵器,2010(3):61-64. doi: 10.3969/j.issn.1673-5048.2010.03.015

    SHEN Yingfan, ZHAO Pinya, CHEN Zujin. Airborne pod stabilized platform structure design[J]. Aviation Weapon,2010(3):61-64. doi: 10.3969/j.issn.1673-5048.2010.03.015
    [8]
    纪明. 多环架光电稳定系统及分析[J]. 应用光学,1994,15(3):60-64.

    JI Ming. Multiple-gimbal optical/electronical stabilization system and analysis[J]. Journal of Applied Optics,1994,15(3):60-64.
    [9]
    大卫·H·蒂特顿, 约翰·L·温斯顿. 捷联惯性导航技术[M]. 张天光, 王秀萍, 王丽霞, 等译. 2版. 北京: 国防工业出版社, 2010: 14-15.

    TITTERTON D H, WESTON J L. Strapdown inertial navigation technology[M]. Translated by ZHANG T G, WANG X P, WANG L X. 2nd ed. Beijing: National Defense Industry Press, 2010: 14-15.
    [10]
    宫经宽. 航空机载惯性导航系统[M]. 北京: 航空工业出版社, 2010: 16-18.

    GONG Jingkuan. Airborne inertial navigation system[M]. Beijing: Aviation Industry Press, 2010: 16-18.
    [11]
    秦永元. 惯性导航[M]. 北京: 科学出版社, 2006: 5-9.

    QIN Yongyuan. Inertial navigation[M]. Beijing: Science Press, 2006: 5-9.
    [12]
    彭富伦, 王静, 吴颐雷, 等. 车载光电侦察系统目标定位及误差分析[J]. 应用光学,2014,35(4):557-562.

    PENG Fulun, WANG Jing, WU Yilei, et al. Object positioning and error analysis of vehicular electro-optical reconnaissance system[J]. Journal of Applied Optics,2014,35(4):557-562.
    [13]
    张璟玥, 纪明, 王惠林. 机载稳瞄控制系统模型及仿真分析[J]. 应用光学,2006,27(6):491-496.

    ZHANG Jingyue, JI Ming, WANG Huilin. Modeling and simulation of airborne stabilized sighting system[J]. Journal of Applied Optics,2006,27(6):491-496.
    [14]
    乔治·埃利斯. 控制系统设计指南[M]. 汤晓君, 译. 4版. 北京: 机械工业出版社, 2016: 241-245.

    ELLIS G. Control system design guide[M]. Translated by TANG X J. 4th ed. Beijing: China Machine Press, 2016: 241-245.
    [15]
    王正林, 王胜开, 陈国顺, 等. Matlab/Simulink与控制系统仿真[M]. 北京: 电子工业出版社, 2017: 206-212.

    WANG Zhenglin, WANG Shengkai, CHEN Guoshun, et al. Matlab/Simulink and control system simulation[M]. Beijing: Publishing House of Electronics Industry, 2017: 206-212.
  • Related Articles

    [1]MA Yuefei, LIN Di. Photoelectric pod control method based on sliding mode variable structure control and prediction tracking[J]. Journal of Applied Optics, 2022, 43(1): 36-40. DOI: 10.5768/JAO202243.0101006
    [2]Xue Yuanyuan, Chen Wenjian, Kang Tingting, Chen Ying, Zhang Xiajiang, Yang Yuancheng. Inertial compensation method for LOS drift of gyroscope stabilization platform[J]. Journal of Applied Optics, 2016, 37(2): 177-182. DOI: 10.5768/JAO201637.0201005
    [3]Lei Wen. Identification of axial RLG drift in single-axis inertial navigation system based on artificial fish swarm algorithm[J]. Journal of Applied Optics, 2014, 35(4): 725-728.
    [4]JIN Yi, WU Xun-zhong, XIE Nie. Modeling and simulation of FOG random drift based on Allan variance[J]. Journal of Applied Optics, 2014, 35(3): 547-550.
    [5]GAO Guo-chang, LONG Chao, SI Lei, JING Chun-yuan. Simulation and design of beam drift measurement with defocus grating[J]. Journal of Applied Optics, 2013, 34(2): 313-318.
    [6]GAO Ming, LI Zhan-bin. Special functions for beam drift in atmospheric turbulence[J]. Journal of Applied Optics, 2009, 30(2): 225-228.
    [7]PENG Fu-lun, CAO Hui, YAN Ning, JIANG Xu, XU Jiao-jie. Software for correcting gyro drift error in inertial stabilization system[J]. Journal of Applied Optics, 2009, 30(1): 34-37.
    [8]JIA Wen-wu, WANG Yue-feng, HUANG Feng. Rigorous vector analysis for effect of wavelength drift on Fresnel lens[J]. Journal of Applied Optics, 2008, 29(5): 830-832.
    [9]WANG Chun-yang, Li Jin-shi. Detection of laser spot drift[J]. Journal of Applied Optics, 2007, 28(2): 205-208.
    [10]WU Yu-jing, JI Ming. Compensation technology for high velocity tracking of electrooptical pod[J]. Journal of Applied Optics, 2006, 27(4): 293-297.
  • Cited by

    Periodical cited type(3)

    1. 李亚红,李满,魏文浩,褚金奎,邹念育,姜珊. 基于多变量纳米线栅复合结构的可见光偏振调控. 应用光学. 2024(04): 700-708 . 本站查看
    2. 李春燕,张亦舒,侯少杰,李春玲,李晓诚,寇生中. 传统光栅制备技术及非晶合金光栅制备研究进展. 稀有金属. 2024(12): 1766-1780 .
    3. 齐耀,刘子阳,侯宇田,于晓慧,杨宾. 光谱分频型PV/T系统中纳米颗粒优化分析. 应用光学. 2023(04): 699-710 . 本站查看

    Other cited types(2)

Catalog

    Article views (474) PDF downloads (42) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return