ZHOU Yan, WU Shibin, WANG Lihua, LI Jie, DU Junfeng, BIAN Jiang. Design of catadioptric middle infrared diffractive telescope system with large aperture[J]. Journal of Applied Optics, 2021, 42(5): 767-774. DOI: 10.5768/JAO202142.0501002
Citation: ZHOU Yan, WU Shibin, WANG Lihua, LI Jie, DU Junfeng, BIAN Jiang. Design of catadioptric middle infrared diffractive telescope system with large aperture[J]. Journal of Applied Optics, 2021, 42(5): 767-774. DOI: 10.5768/JAO202142.0501002

Design of catadioptric middle infrared diffractive telescope system with large aperture

More Information
  • Received Date: January 06, 2021
  • Revised Date: February 08, 2021
  • Available Online: August 11, 2021
  • To achieve the high-resolution detection of space infrared telescopes, based on the Schupmann ach-romatic theory, the design and athermalization model of catadioptric middle infrared diffractive telescope system with large aperture were studied. An optical system which had an aperture of 1 m, F-number of 2, full field of view of 0.12°, waveband of 3.8 μm~4.2 μm was designed, the primary mirror and correction mirror were plane diffractive lenses, the relay system adopted catadioptric Cassegrain structure, and the refocusing and three times imaging systems used refractive structure, then the tolerance, ghost image and cold reflection of the system were analyzed. The design results show that at the temperature of −20℃~60℃, the MTF of the system is greater than 0.7 in the range of 16.7 lp/mm, close to the diffraction limit, and has 100% cold shield efficiency. The tolerance of system satisfies requirements of fabrication, the ghost image energy is 0.1%, which has little influence on the target signal, and the Narcissus induced equivalent temperature difference (NITD) value of cold reflection with temperature is less than noise equivalent temperature difference (NETD). The system can provide reference for the design of larger aperture infrared diffractive telescope system.
  • [1]
    WHITEAKER K L, MARSHALEK R G, DOMBER J L, et al. Large aperture diffractive receiver for deep space optical communications[J]. Imaging and Applied Optics,2015,53(3):7-11.
    [2]
    张楠, 卢振武, 李凤有. 衍射望远镜光学系统设计[J]. 红外与激光工程,2007,36(1):106-108. doi: 10.3969/j.issn.1007-2276.2007.01.026

    ZHANG Nan, LU Zhenwu, LI Fengyou. Optical design of diffractive telescope[J]. Infrared and Laser Engineering,2007,36(1):106-108. doi: 10.3969/j.issn.1007-2276.2007.01.026
    [3]
    BRITTEN J A, DIXIT S N, DEBRUYCKERE M, et al. Large-aperture fast multilevel Fresnel zone lenses in glass and ultrathin polymer films for visible and near-infrared imaging applications[J]. Applied Optics,2014,53(11):2312-2316. doi: 10.1364/AO.53.002312
    [4]
    杨伟, 吴时彬, 汪利华, 等. 微结构薄膜望远镜研究进展分析[J]. 光电工程,2017,44(5):475-482.

    YANG Wei, WU Shibin, WANG Lihua, et al. Research advances and key technologies of macrostructure membrane telescope[J]. Opto-Electronic Engineering,2017,44(5):475-482.
    [5]
    何传王, 汪利华, 黄鹏, 等. 离轴四反射镜衍射成像光学系统设计[J]. 光电工程,2019,46(11):190099.

    HE Chuanwang, WANG Lihua, HUANG Peng, et al. Design of diffractive imaging optical system based on off-axis four­mirror[J]. Opto-Electronic Engineering,2019,46(11):190099.
    [6]
    王若秋. 基于衍射成像系统的薄膜元件关键技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2017.

    WANG Ruoqiu. Research on key technologies of thin film element based on diffractive imaging system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2017.
    [7]
    王昊, 康福增, 赵卫, 等. 一种红外衍射望远镜的光学设计[J]. 红外与毫米波学报,2016,35(4):425-429. doi: 10.11972/j.issn.1001-9014.2016.04.008

    WANG Hao, KANG Fuzeng, ZHAO Wei, et al. Optical design of infrared diffractive telescope[J]. Journal of Infrared and Milli-meter Waves,2016,35(4):425-429. doi: 10.11972/j.issn.1001-9014.2016.04.008
    [8]
    任智斌, 胡佳盛, 唐洪浪, 等. 10 m大口径薄膜衍射主镜的色差校正技术研究[J]. 光子学报,2017,46(4):24-29.

    REN Zhibin, HU Jiasheng, TANG Honglang, et al. Study on chromatic aberration correction of 10 meter large aperture[J]. Acta Photonica Sinica,2017,46(4):24-29.
    [9]
    谢洪波, 孟庆斌, 杨磊, 等. 中波红外光学系统无热化设计和冷反射抑制[J]. 应用光学,2017,38(3):352-357.

    XIE Hongbo, MENG Qingbin, YANG Lei, et al. Athermalization and suppression of narcissus for medium-wave infrared optical system[J]. Journal of Applied Optics,2017,38(3):352-357.
    [10]
    白瑜, 邢廷文, 林妩媚, 等. 中波红外成像无热化光学系统设计[J]. 应用光学,2012,33(1):181-185.

    BAI Yu, XING Tingwen, LING Wumei, et al. Athermalization of middle infrared optical system[J]. Journal of Applied Optics,2012,33(1):181-185.
    [11]
    张婉仪. 红外折衍混合摄远光学系统无热化设计[J]. 应用光学,2017,38(1):12-18.

    ZHANG Wanyi. Athermalization design of infrared refractive-diffractive telephoto objective[J]. Journal of Applied Optics,2017,38(1):12-18.
    [12]
    廖劲峰, 丁亚林, 姚园. 机载折反式光学系统的无热化设计[J]. 液晶与显示,2019,34(1):43-50.

    LIAO Jingfeng, DING Yalin, YAO Yuan. Athermalized design of airborne mirror-lens optical system[J]. Chinese Journal of Liquid Crystals and Displays,2019,34(1):43-50.
    [13]
    白瑜. 长焦距宽光谱红外双波段消热差探测成像光学系统研究[D]. 成都: 电子科技大学, 2017.

    BAI Yu. Research on infrared dual-band athermal detection imaging system with long focal length and wide spectrum[D]. Chengdu: School of Optoelectronic Information, 2017.
    [14]
    韩培仙, 金光, 钟兴, 等. 一种新型微小视频卫星光学系统设计[J]. 应用光学,2015,36(5):691-697. doi: 10.5768/JAO201536.0501005

    HAN Peixian, JING Guang, ZHONG Xing, et al. Design of new type of micro video-capable satellite optical system[J]. Journal of Applied Optics,2015,36(5):691-697. doi: 10.5768/JAO201536.0501005
    [15]
    姜凯, 周泗忠, 李刚, 等. 折反式中波红外双视场变焦系统无热化设计[J]. 红外与激光工程,2013,42(2):403-407. doi: 10.3969/j.issn.1007-2276.2013.02.024

    JIANG Kai, ZHOU Sizhong, LI Gang, et al. Athermalization design of catadioptric middle infrared dual field zoom system[J]. Infrared and Laser Engineering,2013,42(2):403-407. doi: 10.3969/j.issn.1007-2276.2013.02.024
    [16]
    刘盾. 折、衍混合成像光学系统杂散光研究[D]. 成都: 中国科学院光电技术研究所, 2018.

    LIU Dun. Research on stray light in hybrid diffractive/refractive imaging optical system[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2018.
  • Related Articles

    [1]MO Yuxiao, ZHOU Ziye, FAN Chenguang, YANG Yujing, TIAN Zhen. Modal testing and kinetic finite element correction of mirror assemblies for co-phase devices[J]. Journal of Applied Optics, 2024, 45(6): 1147-1157. DOI: 10.5768/JAO202445.0601006
    [2]XING Minghui, LI Jianjun, ZHAI Wenchao, TANG Qi, ZHENG Xiaobing. Design of support structure for small caliber off-axis parabolic reflector based on finite element analysis[J]. Journal of Applied Optics, 2019, 40(6): 1160-1166. DOI: 10.5768/JAO201940.0605004
    [3]HUANG Yanjie, SHANG Jianhua, REN Lihong, CHENG Xiaojin. Finite element simulation in laser ultrasound for non-destructive testing of aluminum defect materials[J]. Journal of Applied Optics, 2019, 40(1): 150-156. DOI: 10.5768/JAO201940.0107004
    [4]Song Dong-sheng, Yang Yuan-cheng, Gao Ya, Wang Jing, Bu Zhong-hong. FEM modal analysis and test validation for sight-stabilization turret structure[J]. Journal of Applied Optics, 2015, 36(4): 497-502. DOI: 10.5768/JAO201536.0401001
    [5]ZHANG Ming-hui, LIU Yuan-zheng, LAN Pei-feng, ZHANG Zhen-rong. Structural finite element analysis of path length control mirror forlaser gyroscopes[J]. Journal of Applied Optics, 2011, 32(2): 353-357.
    [6]LI Yu-tao, QU Xiao-chi, ZHANG Tian-xiao. Finite element analysis of IR optical system based on ANSYS[J]. Journal of Applied Optics, 2008, 29(2): 174-177.
    [7]ZHAO Shi-bin, ZHAO Jia, ZHANG Cun-lin, DING You-fu, LI Yan-hong. Finite element simulation and analysis for type identification of defects under material surfaces in infrared thermal wave nondestructive detection[J]. Journal of Applied Optics, 2007, 28(5): 559-563.
    [8]LIU Quan-xi, QI Wen-zong, HAO Qiu-long, ZHAO Fang-dong. Finite element analysis of thermal effect of photovoltaic detector irradiated by laser[J]. Journal of Applied Optics, 2007, 28(3): 275-279.
    [9]XU Qiang, WANG Yan-feng, ZHOU Hu, DONG Ji-hong, LI Wei, XU Shu-yan. Design and analysis of lightweight structure and support for primary mirror of space optic remote sensor[J]. Journal of Applied Optics, 2007, 28(1): 43-46.
    [10]LI Fu, RUAN Ping, MA Xiao-long, ZHAO Bao-chang. Methods of opto-mechanical analysis with Zernike polynomials[J]. Journal of Applied Optics, 2007, 28(1): 38-42.
  • Cited by

    Periodical cited type(2)

    1. 李圆圆,王春艳,王志强. 高精度半导体激光打标机F-θ镜头设计. 应用光学. 2020(01): 202-208 . 本站查看
    2. 周燕,沈涛. 多波长广角f-theta透镜光学设计. 应用光学. 2017(04): 533-537 . 本站查看

    Other cited types(1)

Catalog

    Article views (884) PDF downloads (128) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return