ZHOU Kehu, LEI Tao, LUO Gang. Infrared sequence images denoising algorithm based on temporal filtering[J]. Journal of Applied Optics, 2021, 42(3): 474-480. DOI: 10.5768/JAO202142.0302004
Citation: ZHOU Kehu, LEI Tao, LUO Gang. Infrared sequence images denoising algorithm based on temporal filtering[J]. Journal of Applied Optics, 2021, 42(3): 474-480. DOI: 10.5768/JAO202142.0302004

Infrared sequence images denoising algorithm based on temporal filtering

More Information
  • Received Date: April 05, 2021
  • Revised Date: April 11, 2021
  • Available Online: May 05, 2021
  • The infrared image is a commonly used image source of modern optical equipment, the display effect of the image directly affects the user experience of the device, and the noise in the infrared sequence images can cause the decline of display effect. In order to reduce the effect of noise on the display effect of infrared sequence images, by weighting the gray values of multiple historical frames and estimating the noise-free image of the current frame, a denoising algorithm based on the temporal Gaussian filtering was proposed. Referring to the weight distribution method of spatial bilateral filtering, the influence of the gray value was introduced to correct the weight of temporal Gaussian filtering, which solved the trailing and blurring of moving targets in sequence images caused by the temporal filtering. The experimental results show that the temporal filtering method can effectively smooth the noise between frames and reduce the deterioration of display effect of the infrared sequence images caused by the noise; and the problem of trailing and blurring caused by the temporal filtering can be solved with the influence of gray value which is introduced to correct the filtering weight.
  • [1]
    TOMASI C, MANDUCHI R. Bilateral filtering for gray and color images[C]//Proceedings of the Sixth International Conference on Computer Vision. India: IEEE, 1998.
    [2]
    张志强, 王万玉. 一种改进的双边滤波算法[J]. 中国图象图形学报,2009,14(3):443-447. doi: 10.11834/jig.20090310

    ZHANG Zhiqiang, WANG Wanyu. A modified bilateral filtering algorithm[J]. Journal of Image and Graphics,2009,14(3):443-447. doi: 10.11834/jig.20090310
    [3]
    陈潇红, 王维东. 基于时空联合滤波的高清视频降噪算法[J]. 浙江大学学报(工学版),2013,47(5):853-859. doi: 10.3785/j.issn.1008-973X.2013.05.017

    CHEN Xiaohong, WANG Weidong. A HDTV video de-noising algorithm based on spatial-temporal filtering[J]. Journal of Zhejiang University(Engineering Science),2013,47(5):853-859. doi: 10.3785/j.issn.1008-973X.2013.05.017
    [4]
    王涛, 陈凡胜, 苏晓锋. 时空域双边滤波背景抑制算法研究[J]. 应用光学,2016,37(6):854-859.

    WANG Tao, CHEN Fansheng, SU Xiaofeng. Research of background suppression method based on spatial-temporal bilateral filter[J]. Journal of Applied Optics,2016,37(6):854-859.
    [5]
    BHUJLE H, CHAUDHURI S. Novel speed-up strategies for non-local means denoising with patch and edge patch based dictionaries[J]. IEEE Transactions on Image Processing,2014,23(1):356-365. doi: 10.1109/TIP.2013.2290871
    [6]
    BUADES A, COLL B, MOREL J M. A non-local algorithm for image denoising[C]//IEEE Computer Society International Conference on Computer Vision and Pattern Recognition. USA: IEEE, 2005.
    [7]
    王志明, 张丽. 自适应的快速非局部图像去噪算法[J]. 中国图象图形学报,2009,14(4):669-675. doi: 10.11834/jig.20090416

    WANG Zhiming, ZHANG Li. An adaptive fast non local image denoising algorithm[J]. Journal of Image and Graphics,2009,14(4):669-675. doi: 10.11834/jig.20090416
    [8]
    李方舟, 赵耀宏, 向伟, 等. 基于改进非局部均值的红外图像混合噪声去除方法[J]. 红外与激光工程,2019,48(S1):169-179.

    LI Fangzhou, ZHAO Yaohong, XIANG Wei, et al. Infrared image mixed noise removal method based on improved NL-means[J]. Infrared and Laser Engineering,2019,48(S1):169-179.
    [9]
    张宝华, 刘鹤. 采用子带分量阈值估计的红外图像去噪方法[J]. 中国激光,2014,41(8):224-231.

    ZHANG Baohua, LIU He. Infrared image denoising algorithm based on sub-band component threshold estimation[J]. Chinese Journal of Lasers,2014,41(8):224-231.
    [10]
    杨恢先, 王绪四, 谢鹏鹤, 等. 改进阈值与尺度间相关的小波红外图像去噪[J]. 自动化学报,2011,37(10):1167-1174.

    YANG Huixian, WANG Xusi, XIE Penghe, et al. Infrared image denoising based on improved threshold and inter-scale correlations of wavelet transform[J]. Acta Automatica Sinica,2011,37(10):1167-1174.
    [11]
    陈小明, 颜景龙, 李玉珏, 等. 基于信息冗余的小波红外图像去噪算法[J]. 激光与红外,2013,43(3):265-271. doi: 10.3969/j.issn.1001-5078.2013.03.009

    CHEN Xiaoming, YAN Jinglong, LI Yujue, et al. Infrared image de-noising based on redundant DWT[J]. Laser & Infrared,2013,43(3):265-271. doi: 10.3969/j.issn.1001-5078.2013.03.009
    [12]
    张长江, 付梦印, 金梅. 基于离散正交小波变换的红外图像去噪方法[J]. 红外与激光工程,2003,32(4):401-406. doi: 10.3969/j.issn.1007-2276.2003.04.018

    ZHANG Changjiang, FU Mengyin, JIN Mei. Method of infrared image denoising based on discrete orthogonal wavelet transform[J]. Infrared and Laser Engineering,2003,32(4):401-406. doi: 10.3969/j.issn.1007-2276.2003.04.018
    [13]
    DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing,2007,16(8):2080-2095. doi: 10.1109/TIP.2007.901238
    [14]
    BURGER H C, SCHULER C J, HARMELING S. Image denoising: Can plain neural networks compete with BM3D?[C]//IEEE Conference on Computer Vision and Pattern Recognition. USA: IEEE, 2012.
    [15]
    TIAN Chunwei, FEI Lunke, ZHENG Wenxian, et al. Deep learning on image denoising: An overview[J]. Neural Networks,2020,131:251-275. doi: 10.1016/j.neunet.2020.07.025
    [16]
    TIAN Chunwei, XU Yong, LI Zuoyong, et al. Attention-guided CNN for image denoising[J]. Neural Networks,2020,124:117-129. doi: 10.1016/j.neunet.2019.12.024
    [17]
    EHRET T, DAVY A, MOREL J M, et al. Model-blind video denoising via frame-to-frame training[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. USA: IEEE, 2019.
    [18]
    TASSANO M, DELON J, VEIT T. FastDVDnet: Towards real-time deep video denoising without flow estimation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. USA: IEEE, 2020.
    [19]
    谭洪涛, 田逢春, 张莎, 等. 结合运动补偿的球体双边滤波视频降噪算法[J]. 系统工程与电子技术,2010,32(12):2701-2706. doi: 10.3969/j.issn.1001-506X.2010.12.42

    TAN Hongtao, TIAN Fengchun, ZHANG Sha, et al. Improved video denoising method based on motion compensated sphere bilateral filtering[J]. Systems Engineering and Electronics,2010,32(12):2701-2706. doi: 10.3969/j.issn.1001-506X.2010.12.42
    [20]
    龙红梅, 田逢春, 谭洪涛, 等. 一种基于运动估计的3D视频降噪算法[J]. 计算机与数字工程,2009,37(6):122-124. doi: 10.3969/j.issn.1672-9722.2009.06.033

    LONG Hongmei, TIAN Fengchun, TAN Hongtao, et al. 3D video noise reduction based on motion estimation[J]. Computer & Digital Engineering,2009,37(6):122-124. doi: 10.3969/j.issn.1672-9722.2009.06.033
  • Related Articles

    [1]ZHOU Chaohong, QIAN Yunsheng, ZHANG Jingzhi. Modulation transfer function testing system for EBAPS[J]. Journal of Applied Optics, 2024, 45(5): 992-1000. DOI: 10.5768/JAO202445.0503001
    [2]ZHANG Huaili, LI Yingchun, ZHANG Tinghua. Method of variable speed control for focusing mechanism limited interval based on image definition function[J]. Journal of Applied Optics, 2021, 42(6): 969-974. DOI: 10.5768/JAO202142.0601004
    [3]JIANG Changlu, YUAN Liang, WANG Jian’gang, LI Hui, WANG Shengyun, KANG Dengkui, YANG Pengli, WANG Lei. Dynamic modulation transfer function measuring device for photoelectric imaging system[J]. Journal of Applied Optics, 2021, 42(4): 592-596. DOI: 10.5768/JAO202142.0401004
    [4]Zhang Song, Xie Yong-jie, Zhang Hua-liang, Zhao Yan. Monocular measurement for object-s attitude based on vanishing point theory[J]. Journal of Applied Optics, 2015, 36(3): 420-423. DOI: 10.5768/JAO201536.0303003
    [5]BAI Xiao-feng, SHI Feng, Lv Feng, CHENG Hong-chang, HE Ying-ping, YIN Lei. Weighted correction for MTF of fiber-optic image inverter[J]. Journal of Applied Optics, 2012, 33(5): 1006-1010.
    [6]YANG Yong-ming, LI Xin-yang, ZHAO Jia-xin. Scanning modulation transfer function analysis of push-broom linear TDI CCD[J]. Journal of Applied Optics, 2011, 32(5): 872-877.
    [7]ZHANG San-xi, HU Xiao-li, ZHOU Zhi-qiang, ZHENG Rong-hua, CAO Feng. Interpretation of target attitude based on optical image[J]. Journal of Applied Optics, 2011, 32(4): 657-661.
    [8]HUANG Zhen, SHU Chao-lian, MA Wei-hong, YANG Li-hong, SUN Guo-bin. MTF testing based on a pinhole target[J]. Journal of Applied Optics, 2007, 28(4): 504-507.
    [9]GUAN Ying-zi, HAN Si-ning. Development of a Test Software for the Modulated Transfer Function of CCD Camera[J]. Journal of Applied Optics, 2004, 25(6): 54-56.
    [10]CHE Shuang-liang, ZHAO Chuang-she. The Numerical Analysis of Systematic Modulation Transfer Function in Subpixel Dynamic Imaging Technique[J]. Journal of Applied Optics, 2004, 25(2): 19-21.
  • Cited by

    Periodical cited type(2)

    1. 刘海秋,高彦伟,闫得杰. 基于遥感图像及工程参数的全局像移探测算法. 应用光学. 2019(05): 838-846 . 本站查看
    2. 刘铁英,巩红晓. 科技期刊三线表使用中的常见问题. 学报编辑论丛. 2016(00): 131-135 .

    Other cited types(1)

Catalog

    Article views (923) PDF downloads (104) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return