LI Cong, XU Zhao, CHEN Jie, NI Yang, ZHOU Xin. Improving effect of speckle autocorrelation reconstruction based on off-axis digital holography[J]. Journal of Applied Optics, 2021, 42(2): 262-267. DOI: 10.5768/JAO202142.0202002
Citation: LI Cong, XU Zhao, CHEN Jie, NI Yang, ZHOU Xin. Improving effect of speckle autocorrelation reconstruction based on off-axis digital holography[J]. Journal of Applied Optics, 2021, 42(2): 262-267. DOI: 10.5768/JAO202142.0202002

Improving effect of speckle autocorrelation reconstruction based on off-axis digital holography

More Information
  • Received Date: November 02, 2020
  • Revised Date: November 25, 2020
  • Available Online: February 25, 2021
  • Aiming at the condition that the imaging object does not exceed the memory effect range of the scattering medium, a method combining digital off-axis holography to reduce the speckle autocorrelation noise in the imaging of the scattering medium was proposed. When the imaging target passed through the scattering medium, the autocorrelation technique combined with the phase recovery algorithm could reconstruct the imaging target from the speckle. However, in the actual imaging process, in order to effectively suppress the influence of environmental noise and thermal noise on the reconstruction effect, the design used the phase shift method in off-axis holography to eliminate the interference of the static noise item in the noise item, and then used the speckle autocorrelation and the phase recovery algorithm reconstructed the imaging target with better effect after denoising. The structural similarity was used to quantitatively evaluate the reconstruction effect. The simulation results show that for the given imaging target, the structural similarity before and after denoising increases from 0.879 6 to 0.987 5, which verifies the effectiveness of the method. It shows that the proposed method can improve the reconstruction effect of speckle autocorrelation method.
  • [1]
    HUANG D, SWANSON E, LIN C, et al. Optical coherence tomography[J]. Science,1991,254(5035):1178-1181. doi: 10.1126/science.1957169
    [2]
    BAI Y, HAN S. Ghost imaging with thermal light by third-order correlation[J]. Physical Review A,2007,76(4):538-538.
    [3]
    BLANCO L, MUGNIER L M. Marginal blind deconvolution of adaptive optics retinal images[J]. Optics Express,2011,19(23):23227-23239. doi: 10.1364/OE.19.023227
    [4]
    HSIEH C L, PU Y, GRANGE R, et al. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media[J]. Optics Express,2010,18(12):12283-12290. doi: 10.1364/OE.18.012283
    [5]
    CUI M. Parallel wavefront optimization method for focusing light through random scattering media[J]. Optics Letters,2011,36(6):870-872. doi: 10.1364/OL.36.000870
    [6]
    YU H, HILLMAN T R, CHOI W, et al. Measuring large optical transmission matrices of disordered media[J]. Physical Review Letters,2013,111(15):153902. doi: 10.1103/PhysRevLett.111.153902
    [7]
    BERTOLOTTI J, PUTTEN E G V, BLUM C, et al. Memory effects in propagation of optical waves through disordered media[J]. Nature,2012,491(7423):232-234.
    [8]
    CULLUM B M, MCLAMORE E S, SHAO X, et al. Speckle-correlation imaging through highly scattering turbid media with LED illumination[J]. SPIE Proceedings on Smart Biomedical and Physiological Sensor Technology XII,2015,9487:948710.
    [9]
    YANG Wanqin, LI Guowei, SITU Guohai. Imaging through scattering media with the auxiliary of a known reference object[J]. Scientific Reports,2018,8(1):27754.
    [10]
    STROKE G W. Lensless Fourier‐transform method for optical holography[J]. Applied Physics Letters,1965,6(10):201-203. doi: 10.1063/1.1754131
    [11]
    GOODMAN J W, HUNTLEY W, JACKSON D W, et al. Wavefront reconstruction imaging through random media[J]. Applied Physics Letters,1966,8(12):311-313. doi: 10.1063/1.1754453
    [12]
    KOGELNIK H, PENNINGTON K S. Holographic imaging through a random medium[J]. Journal of the Optical Society of America,1968,58(2):273-274. doi: 10.1364/JOSA.58.000273
    [13]
    白星, 王晶, 王金超, 等. 基于QR码和算术编码的图像加密无损恢复方法[J]. 应用光学,2020,41(5):973-977. doi: 10.5768/JAO202041.0502006

    BAI Xing, WANG Jing, WANG Jinchao, et al. A lossless recovery method for image encryption based on QR code and arithmetic coding[J]. Applied Optics,2020,41(5):973-977. doi: 10.5768/JAO202041.0502006
    [14]
    SOMKUWAR A S, DAS B, VINU R V, et al. Non-invasive single-shot 3D imaging through a scattering layer using speckle interferometry[J]. OALib Journal,2015,1511:04658.
    [15]
    VINU R V, KIM K, SOMKUWAR A S, et al. Imaging through scattering media using digital holography[J]. Optics Communications,2019,439:218-223. doi: 10.1016/j.optcom.2019.01.080
    [16]
    FENG S, KANE C, LEE P A, et al. Correlations and fluctuations of coherent wave transmission through disordered media[J]. Physical Review Letters,1988,61(7):834-837. doi: 10.1103/PhysRevLett.61.834
    [17]
    FREUND I, ROSENBLUH M, FENG S. Memory effects in propagation of optical waves through disordered media[J]. Physical Review Letters,1988,61(20):2328-2331.
    [18]
    KATZ O, HEIDMANN P, FINK M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics,2014,8:784-790. doi: 10.1038/nphoton.2014.189
    [19]
    钱克矛, 续伯钦, 伍小平. 光学干涉计量中的位相测量方法[J]. 实验力学,2001(03):239-249. doi: 10.3969/j.issn.1001-4888.2001.03.001

    QIAN Kemao, XU Boqin, WU Xiaoping. Phase measurement method in optical interferometry[J]. Experimental Mechanics,2001(03):239-249. doi: 10.3969/j.issn.1001-4888.2001.03.001
    [20]
    李俊昌, 熊秉衡. 信息光学教程[M]. 北京: 科学出版社, 2011.

    LI Junchang, XIONG Bingheng. Information Optics Course[M]. Beijing: Science Press, 2011.
    [21]
    WANG Z. Image quality assessment: from error visibility to structural similarity//IEEE Transactions on Image Processing[C]. USA: IEEE, 2004.

Catalog

    Article views (1054) PDF downloads (71) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return