HU Yaosheng, LI Hanyang. Simultaneous measurement sensor of temperature and stress based on UV lithography phase-shifted grating[J]. Journal of Applied Optics, 2021, 42(1): 200-206. DOI: 10.5768/JAO202142.0108002
Citation: HU Yaosheng, LI Hanyang. Simultaneous measurement sensor of temperature and stress based on UV lithography phase-shifted grating[J]. Journal of Applied Optics, 2021, 42(1): 200-206. DOI: 10.5768/JAO202142.0108002

Simultaneous measurement sensor of temperature and stress based on UV lithography phase-shifted grating

More Information
  • Received Date: February 24, 2020
  • Revised Date: March 31, 2020
  • Available Online: July 15, 2020
  • The traditional fiber grating sensors are cross-sensitive to temperature stress and cannot simultaneously measure the change of the temperature stress of the measured object. In view of this situation, a new method of lithographing phase-shifted gratings using ultraviolet light was proposed. Before lithographing the gratings, the method of electrode discharge was used to remove the photosensitivity of a very small section of the optical fiber, so that the original uniform periodic distribution of the fiber was destroyed to form a phase-shifted grating, and its theoretical analysis was carried out. There were two distinct resonance peaks in the transmission spectrum of this phase-shifted grating. Using the properties of two peaks with different sensitivity to temperature and dependent variable, the simultaneous measurement of temperature and stress could be achieved by establishing the demodulation matrix. The experimental results show that the phase-shifted Bragg grating made by this method can realize the simultaneous measurement of temperature and stress accurately. The maximum temperature sensitivity of the sensor can reach to 9.51 pm/℃, and the sensitivity variance is lower than 2.125×10−7. The maximum strain sensitivity can reach to 0.767 pm/με, and the sensitivity variance is lower than 2.156×10−10.
  • [1]
    杨思玉, 万生鹏, 王浩宇, 等. 单点相移光纤光栅光谱特性的研究与应用[J]. 应用光学,2019,40(2):349-355.

    YANG Siyu, WAN Shengpeng, WANG Haoyu, et al. Research and application of spectrum characteristics of single phase-shifted fiber Bragg grating[J]. Journal of Applied Optics,2019,40(2):349-355.
    [2]
    张宝荣, 黄震, 张玉唯. 基于叠栅的Bragg光纤光栅综合方法的研究[J]. 应用光学,2019,40(4):699-703.

    ZHANG Baorong, HUANG Zhen, ZHANG Yuwei. Study of Bragg grating synthesis methods based on superimposed fiber grating[J]. Journal of Applied Optics,2019,40(4):699-703.
    [3]
    童杏林, 何为, 张翠, 等. 光纤光栅与光纤法珀传感器在航空航天领域的研究与应用进展[J]. 激光杂志,2018,39(7):1-7.

    TONG Xinglin, HE Wei, ZHANG Cui, et al. Research and application progress of fiber Bragg grating and Fabry-Perot sensors in the field of aeronautics and astronautics[J]. Laser Journal,2018,39(7):1-7.
    [4]
    徐国权, 熊代余. 光纤光栅传感技术在工程中的应用[J]. 中国光学,2013,6(3):306-317.

    XU Guoquan, XIONG Daiyu. Applications of fiber Bragg grating sensing technology in engineering[J]. Chinese Optics,2013,6(3):306-317.
    [5]
    李婧怡, 朱振华. 光纤光栅传感技术在航空航天领域中的应用与发展[J]. 中国新通信,2018,20(4):67-69. doi: 10.3969/j.issn.1673-4866.2018.04.057

    LI Jingyi, ZHU Zhenhua. Application and development of fiber grating sensing technology in aerospace[J]. China New Telecommunications,2018,20(4):67-69. doi: 10.3969/j.issn.1673-4866.2018.04.057
    [6]
    王维俊. 基于FBG宏应变空间分布的梁桥监测研究[D]. 苏州: 苏州科技大学, 2019: 1-7.

    WANG Weijun. Study on the monitoring of beam bridge based on FBG macro strain spatial distribution[D]. Suzhou: Suzhou University of Science and Technology, 2019: 1-7.
    [7]
    王正方. 桥隧工程安全监测的光纤光栅传感理论及关键技术研究[D]. 济南: 山东大学, 2014: 1-9.

    WANG Zhengfang. Study on fiber Bragg grating sensing theory and key technology for bridges and tunnels engineering safety monitoring[D]. Jinan: Shandong University, 2014: 1-9.
    [8]
    FOOTE P D. Fiber Bragg grating strain sensors for aerospace smart structure[J]. SPIE,1994,2361:162-166.
    [9]
    WEIS R S, BEADLE B M. MWD telemetry system for coiled-tubing drilling using optical fiber grating modulators downhole[C]//12th International Conference on Optical Fiber Sensors, Williamsburg, Virginia. Washington, D. C.: OSA, 1997: 416-419.
    [10]
    姜德生, 何伟. 光纤光栅传感器的应用概况[J]. 光电子·激光,2002,13(4):420-430. doi: 10.3321/j.issn:1005-0086.2002.04.026

    JIANG Desheng, HE Wei. Review of applications for fiber Bragg grating sensors[J]. Journal of Optoelectronics Laser,2002,13(4):420-430. doi: 10.3321/j.issn:1005-0086.2002.04.026
    [11]
    RUPALI S, SWEE C T. Thermal compensation of Bragg grating for structural health monitoring[J]. SPIE,1998,4934:150-157.
    [12]
    赵洪霞, 程培红, 丁志群, 等. 双锥形光纤光栅实现温度、折射率和液位同时测量[J]. 中国激光,2016,43(10):231-237.

    ZHAO Hongxia, CHENG Peihong, DING Zhiqun, et al. Simultaneous measurement of temperature, refractive index and liquid level based on biconical fiber gratings[J]. Chinese Journal of Lasers,2016,43(10):231-237.
    [13]
    CAVALEIRO P M, ARAUJO F M, FERREIRA L A, et al. Simultaneous measurement of strain and temperature using Bragg gratings written in germanosilicate and boron-codoped germanosilicate fibers[J]. IEEE Photonics Technology Letters,1999,11(12):1635-1637.
    [14]
    JIANG Y J, YUAN, XU J, et al. Phase-shifted fiber Bragg grating inscription by fusion splicing technique and femtosecond laser[J]. Optics and Lasers in Engineering,2016,86:236-241.
    [15]
    JIANG Y J, LIU C, LI D, et al. Simultaneous measurement of temperature and strain using a phase-shifted fiber Bragg grating inscribed by femtosecond laser[J]. Measurement Science and Technology,2018,29(4):045101.
    [16]
    YANG W, GENG T, YANG J, et al. A phase-shifted long period fiber grating based on filament heating method for simultaneous measurement of strain and temperature[J]. Journal of Optics,2015,17(7):075801.
  • Related Articles

    [1]JIN Neng, GAO Zhishan, GUO Zhenyan, ZHENG Jie, CHE Xiaoyu, YUAN Qun, ZHU Dan, LEI Lihua, FU Yunxia. Stress measurement method and error correction based on polarization camera[J]. Journal of Applied Optics, 2024, 45(6): 1212-1218. DOI: 10.5768/JAO202445.0603001
    [2]QI Linkai, LI Kewu, LI Kunyu, WANG Zhibin, LI Jinhua. Design of multi-configuration scanning system for stress birefringence distribution measurement[J]. Journal of Applied Optics, 2024, 45(3): 608-615. DOI: 10.5768/JAO202445.0301003
    [3]ZHANG Yan, ZHANG Fan, ZHAO Guanqi, CHU Daping. Circumferential stress measurement of blood vessels model in vitro based on fiber Bragg grating sensor[J]. Journal of Applied Optics, 2022, 43(5): 1007-1014. DOI: 10.5768/JAO202243.0508003
    [4]GAO Yang, WAN Xinjun, XIE Shuping. Stress measurement of transparent elements based on polarized camera[J]. Journal of Applied Optics, 2022, 43(2): 284-290. DOI: 10.5768/JAO202243.0203002
    [5]Su Ying, Xu Zengqi, Yang Haicheng, Shangguan Yongping, Zhang Yan, Xu Xiaolei, Liu Xuanmin, Guo Rui. Micro stress and high precision forming technique for special-shaped light window[J]. Journal of Applied Optics, 2018, 39(6): 880-884. DOI: 10.5768/JAO201839.0605001
    [6]Guo Chang-li, Yang Man, Guo Zhao-xia, Wang Shou-quan, Yang Yi. Measurement method of optical glass stress based on optical interference[J]. Journal of Applied Optics, 2015, 36(6): 923-930. DOI: 10.5768/JAO201536.0603005
    [7]WANG Gang, XU Qiang, LIU Yang, WANG Hu, LIANG Xiao-dong, LI Yan, CHEN Zhi-xue. Transient distributions of temperature field and thermal stress field induced by laser irradiation[J]. Journal of Applied Optics, 2011, 32(4): 801-805.
    [8]YANG Hao-dong, YUAN Jie, WANG Li-tao. Stress effect of output mirror in slightly noncoplanar resonators[J]. Journal of Applied Optics, 2011, 32(4): 641-645.
    [9]LIU Quan-xi, ZHONG Ming. Temperature and thermal stress distribution in thin disk laser end-pumped by LD[J]. Journal of Applied Optics, 2010, 31(4): 636-640.
    [10]ZHANG Yao-ping, XU Hong, LING Ning, ZHANG Yun-dong1. Calculation method of predictive model for residual stress distribution in optical thin films[J]. Journal of Applied Optics, 2006, 27(2): 108-111.
  • Cited by

    Periodical cited type(6)

    1. 李雪琴,唐艳妮,刘芯,何楚洹,芦静. 基于牛顿环的拓展性实验方案设计. 物理通报. 2023(10): 116-119+126 .
    2. 杜修忻,田浩亮,王浩,金国,张保森,王长亮,郭孟秋,王天颖,张昂,肖晨兵. 智能应力或结构损伤自敏涂层研究现状及展望. 装备环境工程. 2021(06): 77-86 .
    3. 郭长立,黄璋. 光学玻璃弹性模量的自动化测量方法. 应用光学. 2020(04): 868-874 . 本站查看
    4. 赵旺,周薇薇,平兆艳,郑庆华. 牛顿环等厚干涉的实验仿真与智能分析. 山西能源学院学报. 2019(02): 100-102 .
    5. 郭长立,冯小强. 光学玻璃挠曲刚度的光学测量方法研究. 光学技术. 2018(02): 231-236 .
    6. 杨易,郭长立,郭朝霞,冯小强. 基于图像处理的牛顿环应力测量方法. 实验室研究与探索. 2017(08): 71-76 .

    Other cited types(7)

Catalog

    Article views (5396) PDF downloads (67) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return