LIU Zhiying, XIAO Shengzhe, QIN Tianxiang. Application of polarization imaging in measurement of optical curvature radius[J]. Journal of Applied Optics, 2021, 42(1): 95-103. DOI: 10.5768/JAO202142.0103001
Citation: LIU Zhiying, XIAO Shengzhe, QIN Tianxiang. Application of polarization imaging in measurement of optical curvature radius[J]. Journal of Applied Optics, 2021, 42(1): 95-103. DOI: 10.5768/JAO202142.0103001

Application of polarization imaging in measurement of optical curvature radius

More Information
  • Received Date: June 15, 2020
  • Revised Date: September 09, 2020
  • Available Online: December 27, 2020
  • In order to ensure the quality of whole optical system, it is important to measure and check the optical curvature radius accurately. The method of mechanical spherometer and the method of optical projection were combined, and the photoelectric image method was used to measure the vector height, then the radius could be calculated indirectly. The influence caused by edge error of measured element on the accuracy of the vector height and curvature radius was analyzed. Polarization imaging and general imaging were used to measure the height and compare the results, and it is found that polarization images can have better edge details, the accuracy of the vector height was effectively improved, and the error of the optical curvature radius was reduced by more than 0.5%. The results show that the method of polarization imaging has important application value in measuring the optical curvature radius.
  • [1]
    娄颖. 光学透镜参数现代测量方法研究[J]. 红外与激光工程,2008,37(S1):71-74.

    LOU Ying. Study on modern measuring methods for lens optical parameters[J]. Infrared and Laser Engineering,2008,37(S1):71-74.
    [2]
    YANG Z M, GAO Z S, WANG Shuai, et al. Focal length and radius of curvature measurement using wavefront difference method[C]//2015 Applied Optics and Photonics China. Beijing: SPIE, 2015.
    [3]
    彭石军, 苗二龙, 史振广, 等. 高精度曲率半径测量研究[J]. 激光与光电子学进展,2014,51(1):101-107.

    PENG Shijun, MIAO Erlong, SHI Zhenguang, et al. Research on high-precision measurement of radius of curvature[J]. Laser & Optoelectronics Progress,2014,51(1):101-107.
    [4]
    刘嘉健, 董博, 吕梓亮, 等. 基于全场干涉测量方法的透镜三维轮廓测量[J]. 应用光学,2018,39(2):220-224.

    LIU Jiajian, DONG Bo, LYU Ziliang, et al. Three-dimensional profile measurement for lens by full-field interferometry[J]. Journal of Applied Optics,2018,39(2):220-224.
    [5]
    毛洁. 高精度曲率半径干涉测量技术研究[D]. 四川: 中国科学院研究生院(光电技术研究所), 2015.

    MAO Jie. Study on techniques of high-accuracy radius interferometric measurement[D]. Sichuan: Graduate School of CAS (Institute of Optoelectronic Technology), 2015.
    [6]
    李华建, 肖作江, 刘颖, 等. 高精度角膜曲率半径测量系统[J]. 中国光学,2020,13(3):501-509.

    LI Huajian, XIAO Zuojiang, LIU Ying, et al. High precision corneal curvature radiusmeasurement system[J]. Chinese Optics,2020,13(3):501-509.
    [7]
    陈鹏, 王成, 郑刚, 等. 角膜曲率计的优化设计及实现[J]. 光电工程,2019,46(1):54-64.

    CHEN Peng, WANG Cheng, ZHENG Gang, et al. Optimization design andrealization of a keratometer[J]. Opto-Electronic Engineering,2019,46(1):54-64.
    [8]
    王劲松, 张雪莹, 李延风, 等. 基于Placido盘法角膜曲率测量误差分析及系统优化[J]. 长春理工大学学报(自然科学版),2019,42(1):9-12.

    WANG Jinsong, ZHANG Xueying, LI Yanfeng, et al. Error analysis and system optimization of corneal curvature measurement based on Placido disk method[J]. Journal of Changchun University of Science and Technology (Natural Science Edition),2019,42(1):9-12.
    [9]
    柳祎, 史浩东, 姜会林, 等. 粗糙目标表面红外偏振特性研究[J]. 中国光学,2020,13(3):459-471.

    LIU Yi, SHI Haodong, JIANG Huilin, et al. Infrared polarization propertiesof targets with rough surface[J]. Chinese Optics,2020,13(3):459-471.
    [10]
    王莞舒. 基于投影法的高精度直径测量系统研究[D]. 浙江: 浙江大学, 2015.

    WANG Wanshu. Research of high-accuracy diameter measurement system based on projection method[D]. Zhejiang: Zhejiang University, 2015.
    [11]
    廖海洋. 隐形眼镜投影测量仪的设计[J]. 光学精密工程,2004,12(3):254-258. doi: 10.3321/j.issn:1004-924X.2004.03.002

    LIAO Haiyang. Design of contact lenses projection measuring instrument[J]. Optics and Precision Engineering,2004,12(3):254-258. doi: 10.3321/j.issn:1004-924X.2004.03.002
    [12]
    包宏权. 压力传感器结构设计和优化分析[D]. 江苏: 东南大学, 2016.

    BAO Hongquan. Design and optimization of the pressure sensor[D]. Jiangsu: Southeast University, 2016.
    [13]
    刘泽. 基于图像处理的光学透镜参数测量方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    LIU Ze. Research on measurement methods of optical lens parameters based on digital image processing[D]. Harbin: Harbin Institute of Technology, 2013.
    [14]
    CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,PAMI-8(6):679-698. doi: 10.1109/TPAMI.1986.4767851
    [15]
    陈伟伟, 武伟. 基于Hough变换的直线和圆提取方法[J]. 电子质量,2019(2):17-19.

    CHEN Weiwei, WU Wei. The extraction method of line and circle based on Hough transform[J]. Electronics Quality,2019(2):17-19.
    [16]
    王琦, 宋伟东, 王竞雪. 基于Hough变换的直线提取方法及改进[J]. 测绘与空间地理信息,2019,42(6):214-217. doi: 10.3969/j.issn.1672-5867.2019.06.061

    WANG Qi, SONG Weidong, WANG Jingxue. The line extraction method and improvement based on Hough transform[J]. Geomatics & Spatial Information Technology,2019,42(6):214-217. doi: 10.3969/j.issn.1672-5867.2019.06.061
  • Cited by

    Periodical cited type(6)

    1. 刘维慧,梁润泽,赵泉昕,卓朝博,苗永平. 双光源干涉法测量液态薄膜厚度. 大学物理实验. 2024(01): 31-36 .
    2. 易进,张瑞,薛鹏,卜韩,王志斌,李孟委. 基于弹光调制的椭偏测量驱动电路系统设计. 电子设计工程. 2024(04): 32-36+42 .
    3. 杨楠卓,欧阳名钊,周维虎,陈晓梅. 基于光谱反射技术的梯形刻面MEMS高深宽比沟槽深度测量仿真分析. 长春理工大学学报(自然科学版). 2020(02): 48-52+114 .
    4. 刘学聪,苗昕扬,詹洪磊,朱明达,张善哲,赵昆. 基于激光感生电压技术的咖啡粉粒径检测. 应用光学. 2020(05): 1117-1121 . 本站查看
    5. 肖平平,王霏,邓满兰. 基于金属包覆波导结构的纳米间隙测量研究. 激光与光电子学进展. 2020(21): 273-277 .
    6. 肖平平,王霏,邓满兰,胡红武. 基于LSPR的非贵金属纳米薄膜厚度的精确测量. 光电子·激光. 2019(12): 1286-1290 .

    Other cited types(5)

Catalog

    Article views (774) PDF downloads (61) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return