Citation: | HAO Zijian, PU Shengli, LI Yongxi, LI Dihui, HAN Zhongxue. Simulation of Fabry-Perot strain sensor based on tapered fiber Bragg grating[J]. Journal of Applied Optics, 2020, 41(5): 1129-1136. DOI: 10.5768/JAO202041.0508002 |
[1] |
HUANG B, XIONG S, CHEN Z, et al. In-fiber Mach-Zehnder interferometer exploiting a micro-cavity for strain and temperature simultaneous measurement[J]. IEEE Sensors Journal,2019,19(14):5632-5638. doi: 10.1109/JSEN.2019.2906243
|
[2] |
李立新, 吴飞, 蔡璐璐, 等. Bragg光纤光栅法布里-珀罗应变传感器研究[J]. 传感技术学报,2006,19(3):807-809. doi: 10.3969/j.issn.1004-1699.2006.03.067
LI Lixin, WU Fei, CAI Lulu, et al. Study of fiber Bragg grating Fabry-Perot strain sensor[J]. Chinese Journal of Sensors and Actuators,2006,19(3):807-809. doi: 10.3969/j.issn.1004-1699.2006.03.067
|
[3] |
DU W C, TAO X M, TAM H Y. Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature[J]. IEEE Photonics Technology Letters,1999,11(1):105-107. doi: 10.1109/68.736409
|
[4] |
PEREIRA S, LAROCHELLE S. Field profiles and spectral properties of chirped Bragg grating Fabry-Perot interferometers[J]. Optics Express,2005,13(6):1906-1915. doi: 10.1364/OPEX.13.001906
|
[5] |
HAN Y G, DONG X, KIM C S, et al. Flexible all fiber Fabry-Perot filters based on superimposed chirped fiber Bragg gratings with continuous FSR tunability and its application to a multiwavelength fiber laser[J]. Optics Express,2007,15(6):2921-2926. doi: 10.1364/OE.15.002921
|
[6] |
LIU S, DONG X, SUN J, et al. Free-spectral range tunable Fabry–Perot filter with superimposed fiber Bragg gratings[J]. Optics Communications,2009,282(24):4729-4732. doi: 10.1016/j.optcom.2009.09.033
|
[7] |
DONG X, SHUM P, CHAN C C, et al. FSR-tunable Fabry-Perot filter with superimposed chirped fiber Bragg gratings[J]. IEEE Photonics Technology Letters,2006,18(1):184-186. doi: 10.1109/LPT.2005.861591
|
[8] |
SLAVÍK R, DOUCET S, LAROCHELLE S. High-performance all-fiber Fabry-Perot filters with superimposed chirped Bragg gratings[J]. Journal of Lightwave Technology,2003,21(4):1059-1065. doi: 10.1109/JLT.2003.810097
|
[9] |
WAN X, TAYLOR H F. Intrinsic fiber Fabry-Perot temperature sensor with fiber Bragg grating mirrors[J]. Optics Letters,2002,27(16):1388-1390. doi: 10.1364/OL.27.001388
|
[10] |
MARKOWSKI K, JĘDRZEJEWSKI K, MARZĘCKI M, et al. Linearly chirped tapered fiber-Bragg-grating-based Fabry-Perot cavity and its application in simultaneous strain and temperature measurement[J]. Optics Letters,2017,42(7):1464-1467. doi: 10.1364/OL.42.001464
|
[11] |
KILIC S G, ZHU Y, SHENG Q, et al. Refractometer with etched chirped fiber Bragg grating Fabry-Perot interferometer in multicore fiber[J]. IEEE Photonics Technology Letters,2019,31(8):575-578. doi: 10.1109/LPT.2019.2900621
|
[12] |
马瑞, 张文涛, 王兆刚, 等. 基于Terfenol-D材料和光纤光栅法布里珀罗腔的磁场传感器[J]. 光子学报,2018,47(3):0306006. doi: 10.3788/gzxb20184703.0306006
MA Rui, ZHANG Wentao, WANG Zhaogang, et al. Magnetic sensor based on Terfenol-D materials and fiber Bragg grating Fabry-Perot cavity[J]. Acta Photonica Sinica,2018,47(3):0306006. doi: 10.3788/gzxb20184703.0306006
|
[13] |
董新永, 孔令浚, 赵春柳, 等. 基于法布里-珀罗结构的光纤光栅功能型器件[J]. 激光与光电子学进展,2011,48(12):120604.
DONG Xinyong, KONG Lingjun, ZHAO Chunliu, et al. Multifunctional devices based on fiber Bragg grating Fabry-Perot structures[J]. Laser & Optoelectronics Progress,2011,48(12):120604.
|
[14] |
张乐, 吴波, 叶雯, 等. 基于光纤光栅法布里-珀罗腔锁频原理的高灵敏度光纤振动传感器[J]. 光学学报,2011,31(4):0406006. doi: 10.3788/AOS201131.0406006
ZHANG Le, WU Bo, YE Wen, et al. Highly sensitive fiber-optic vibration sensor based on frequency-locking of FBG Fabry-Perot cavity[J]. Acta Optica Sinica,2011,31(4):0406006. doi: 10.3788/AOS201131.0406006
|
[15] |
成振龙, 赵建林, 周王民, 等. 一种基于光纤光栅法布里-珀罗腔的低频振动传感器[J]. 光子学报,2010,39(1):47-52. doi: 10.3788/gzxb20103901.0047
CHENG Zhenlong, ZHAO Jianlin, ZHOU Wangmin, et al. A vibration sensor based on fiber Bragg grating Fabry-Perot cavity[J]. Acta Photonica Sinica,2010,39(1):47-52. doi: 10.3788/gzxb20103901.0047
|
[16] |
YING Y, ZHAO C, GONG H, et al. Demodulation method of Fabry-Perot sensor by cascading a traditional Mach-Zehnder interferometer[J]. Optics & Laser Technology,2019,118:126-131.
|
[17] |
HOU L, ZHAO C, XU B, et al. Highly sensitive PDMS-filled Fabry-Perot interferometer temperature sensor based on the Vernier effect[J]. Applied Optics,2019,58(18):4858-4865. doi: 10.1364/AO.58.004858
|
[18] |
邸剑, 陈天英. 锥形光纤光栅传感器交叉敏感问题的仿真研究[J]. 光通信研究,2014,40(4):64-66.
DI Jian, CHEN Tianying. Research on cross-sensitivity of conical fiber grating sensors[J]. Study on Optical Communications,2014,40(4):64-66.
|
[19] |
吕昌贵, 崔一平, 王著元, 等. 光纤布拉格光栅法布里-珀罗腔纵模特性研究[J]. 物理学报,2004,53(1):145-150. doi: 10.3321/j.issn:1000-3290.2004.01.027
LYU Changgui, CUI Yiping, WANG Zhuyuan, et al. A study on the longitudinal mode behavior of Fabry_Perot cavity composed of fiber Bragg grating[J]. Acta Physica Sinica,2004,53(1):145-150. doi: 10.3321/j.issn:1000-3290.2004.01.027
|
[20] |
FRAZÃO O, MELO M, MARQUES P V S, et al. Chirped Bragg grating fabricated in fused fibre taper for strain-temperature discrimination[J]. Measurement Science and Technology,2005,16(4):984-988. doi: 10.1088/0957-0233/16/4/010
|
[21] |
OSUCH T, MARKOWSKI K, JEDRZEJEWSKI K. Fiber-optic strain sensors based on linearly chirped tapered fiber Bragg gratings with tailored intrinsic chirp[J]. IEEE Sensors Journal,2016,16(20):7508-7514. doi: 10.1109/JSEN.2016.2601332
|
[22] |
IKHLEF A, HEDARA R, CHIKH-BLED M. Uniform fiber Bragg grating modeling and simulation used matrix transfer method[J]. International Journal of Computer Science Issues (IJCSI),2012,9(1):368-374.
|
[23] |
陈历学, 丁卫强, 李文惠, 等. 一维非均匀 Kerr 介质的传输矩阵算法[J]. 光学学报, 2004, 33(4): 497-500.
CHEN Lixue, DING Weiqiang, LI Wenhui, et al. Transfer matrix algorithm of one-dimensional inhomogeneous Kerr medium[J]. Acta Optica Sinica, 2004, 33(4): 497-500.
|
[24] |
杨思玉, 万生鹏, 王浩宇, 等. 单点相移光纤光栅光谱特性的研究与应用[J]. 应用光学,2019,40(2):349-355.
YANG Siyu, WAN Shengpeng, WANG Haoyu, et al. Research an application of spectrum characteristics of single phase-shifted fiber Bragg grating[J]. Journal of Applied Optics,2019,40(2):349-355.
|
[25] |
MURIEL M A, CARBALLAR A, AZANA J. Field distributions inside fiber gratings[J]. IEEE Journal of Quantum Electronics,1999,35(4):548-558. doi: 10.1109/3.753659
|
[26] |
唐晋发, 顾培夫, 刘旭. 现代光学薄膜技术[M]. 杭州: 浙江大学出版社, 2006.
TANG Jinfa, GU Peifu, LIU Xu. Modern optical thin film technology[M]. Hangzhou: Zhejiang University press, 2006.
|
[27] |
张自嘉, 王昌明. 光纤光栅传输矩阵研究[J]. 光子学报,2007,36(6):1073-1077.
ZHANG Zijia, WANG Changming. Investigation of the transfer matrix of the fiber gratings[J]. Acta Photonica Sinica,2007,36(6):1073-1077.
|
[28] |
涂兴华, 赵宜超. 对称熔融拉锥型光纤光栅温度和应力传感特性[J]. 物理学报,2019,68(24):244204. doi: 10.7498/aps.68.20191034
TU Xinghua, ZHAO Yichao. Temperature and stress sensing characteristics of symmetrically fused tapered fiber grating[J]. Acta Physica Sinica,2019,68(24):244204. doi: 10.7498/aps.68.20191034
|
[1] | Sun Yudan. Study on polarization maintaining fiber Bragg grating strain sensor[J]. Journal of Applied Optics, 2018, 39(6): 942-946. DOI: 10.5768/JAO201839.0608001 |
[2] | Feng Xugang, Du Cuicui, Zhang Jiayan. Probe design of nanometer measuring machine based on grating strain sensor[J]. Journal of Applied Optics, 2017, 38(3): 506-513. DOI: 10.5768/JAO201738.0308001 |
[3] | Zhang Yong, Tang Li, Chen Zhe, Yu Jianhui, Zhong Yongchun. Temperature sensor based on surface Bragg grating of sidepolished fiber[J]. Journal of Applied Optics, 2016, 37(4): 633-638. DOI: 10.5768/JAO201637.0408001 |
[4] | Wang Kang, Gu Jin-liang, Luo Hong-e. Dynamic calibration for Bragg grating strain measurement system[J]. Journal of Applied Optics, 2015, 36(6): 913-917. DOI: 10.5768/JAO201536.0603003 |
[5] | TANG Li, PENG Yong-jun. Numerical simulation on nonlinear transmissive characteristicsof fiber Bragg grating[J]. Journal of Applied Optics, 2011, 32(2): 308-316. |
[6] | XIE Jun-hua, QIN Zi-xiong, ZENG Qing-ke, OU Qi-biao, HUANG Fu, ZHOU Heng-chao. Design of fiber Bragg gratings using particle swarm optimization[J]. Journal of Applied Optics, 2009, 30(4): 674-677. |
[7] | WEI Peng, LI Li-jun, GUO Jun-qiang, CHU Yan-ling. Cross sensitivity of temperature in fiber Bragg grating strain sensing[J]. Journal of Applied Optics, 2008, 29(1): 105-109. |
[8] | YANG Peng-ling, WANG Qun-shu, FENG Guo-bin, LIU Fu-hua, CHENG Jian-ping. A dynamic strain sensor with fiber Bragg gratings[J]. Journal of Applied Optics, 2008, 29(supp): 105-108. |
[9] | LI Zhi-zhong, YANG Hua-yong, LIU Yang, ZHOU Wei-lin, HU Yong-ming. Research on the Pressure Sensing Mechanism of Fiber Bragg Grating[J]. Journal of Applied Optics, 2005, 26(3): 16-19. |
[10] | HU Zhi-xin, ZHANG Ling, HE Ju. A Novel Fiber Bragg Grating Pressure Sensor with High Sensitivity[J]. Journal of Applied Optics, 2005, 26(1): 39-41. |
1. |
刘维慧,梁润泽,赵泉昕,卓朝博,苗永平. 双光源干涉法测量液态薄膜厚度. 大学物理实验. 2024(01): 31-36 .
![]() | |
2. |
易进,张瑞,薛鹏,卜韩,王志斌,李孟委. 基于弹光调制的椭偏测量驱动电路系统设计. 电子设计工程. 2024(04): 32-36+42 .
![]() | |
3. |
杨楠卓,欧阳名钊,周维虎,陈晓梅. 基于光谱反射技术的梯形刻面MEMS高深宽比沟槽深度测量仿真分析. 长春理工大学学报(自然科学版). 2020(02): 48-52+114 .
![]() | |
4. |
刘学聪,苗昕扬,詹洪磊,朱明达,张善哲,赵昆. 基于激光感生电压技术的咖啡粉粒径检测. 应用光学. 2020(05): 1117-1121 .
![]() | |
5. |
肖平平,王霏,邓满兰. 基于金属包覆波导结构的纳米间隙测量研究. 激光与光电子学进展. 2020(21): 273-277 .
![]() | |
6. |
肖平平,王霏,邓满兰,胡红武. 基于LSPR的非贵金属纳米薄膜厚度的精确测量. 光电子·激光. 2019(12): 1286-1290 .
![]() |