WANG Shengyun, SHI Jifang, XIE Qi, SUN Yunan, YU Bing, LI Hongguang, KANG Dengkui. Research on resolution calibration device and method of ultraviolet image intensifier[J]. Journal of Applied Optics, 2020, 41(4): 773-777. DOI: 10.5768/JAO202041.0409901
Citation: WANG Shengyun, SHI Jifang, XIE Qi, SUN Yunan, YU Bing, LI Hongguang, KANG Dengkui. Research on resolution calibration device and method of ultraviolet image intensifier[J]. Journal of Applied Optics, 2020, 41(4): 773-777. DOI: 10.5768/JAO202041.0409901

Research on resolution calibration device and method of ultraviolet image intensifier

More Information
  • Received Date: October 14, 2019
  • Revised Date: January 02, 2020
  • Available Online: July 14, 2020
  • The UV (ultraviolet) image intensifier is the core part of the missile UV warning system, UV early warning system and the various UV radiation monitoring systems, and the accuracy of its parameters directly affects the image quality of the system. In order to ensure the accuracy of the test data, an resolution calibration device of the UV image intensifier was developed. The UV light source used in the resolution calibration device of the UV image intensifier was the UV light with a wavelength range of 200 nm to 400 nm. The corresponding resolution targets, filters, and the optical imaging systems were all required the ability to transmit the UV light. Due to the short wavelength of the UV light, it was easy to generate a great deal of stray light caused by the scattering effect. The UV quartz was adopted by the designed resolution target, the transmission structure was adopted by the UV optical imaging system, and the coaxial conjugate lens was selected as the UV optical imaging system. The experiment and the measurement uncertainty analysis verify that the measurement uncertainty of the calibration device is 5%.
  • [1]
    刘菊, 贾红辉, 尹红伟. 军用紫外光学技术的发展[J]. 光学与光电技术,2006,4(6):60-64. doi: 10.3969/j.issn.1672-3392.2006.06.018

    LIU Ju, JIA Honghui, YIN Hongwei. Development of military ultraviolet technology[J]. Optics﹠Optoelectronic Technology,2006,4(6):60-64. doi: 10.3969/j.issn.1672-3392.2006.06.018
    [2]
    滕鹤松. 紫外成像技术及其应用[J]. 光电子技术,2001,21(4):294-297. doi: 10.3969/j.issn.1005-488X.2001.04.010

    TENG Hesong. UV imaging technology and its applications[J]. Optoelectronic Technology,2001,21(4):294-297. doi: 10.3969/j.issn.1005-488X.2001.04.010
    [3]
    郭晖, 向世明, 田民强. 微光夜视技术发展动态评述[J]. 红外技术,2013,35(2):63-68.

    GUO Hui, XIANG Shiming, TIAN Minqiang. A review of the development of low-light night vision technology[J]. Infrared Technology,2013,35(2):63-68.
    [4]
    杨杰. 紫外探测技术的应用与进展[J]. 光电子技术,2011,31(4):274-278. doi: 10.3969/j.issn.1005-488X.2011.04.012

    YANG Jie. The application and sevelopment of UV setection technology[J]. Optoelectronic technology,2011,31(4):274-278. doi: 10.3969/j.issn.1005-488X.2011.04.012
    [5]
    张宣妮. 紫外探测技术的新发展[J]. 价值工程,2010,29(17):3-5. doi: 10.3969/j.issn.1006-4311.2010.17.002

    ZHANG Xuanni. New developments of UV-detection technology[J]. Value engineering,2010,29(17):3-5. doi: 10.3969/j.issn.1006-4311.2010.17.002
    [6]
    程宏昌, 端木庆铎, 石峰. 双微通道板紫外像增强器工作特性研究[J]. 真空应用,2013,33(6):524-527.

    CHENG Hongchang, DUANMU Qingduo, SHI Feng, et al. Characterization of solar blind double micro-channel plate ultravolet image intensifier[J]. Chinese Journal of Vacuum Science and Technology,2013,33(6):524-527.
    [7]
    张振中. 微光夜视技术的发展及评价[J]. 山西科技,2007(3):110-124. doi: 10.3969/j.issn.1004-6429.2007.03.056

    ZHANG Zhenzhong. Development of low light light lision lechnology and appraisals[J]. Shanxi science and technology,2007(3):110-124. doi: 10.3969/j.issn.1004-6429.2007.03.056
    [8]
    茹志兵, 华珂. 一种宽光谱紫外镜头的设计[J]. 应用光学,2003,24(1):11-14.

    RU Zhibing, HUA Ke. A king of UV lens disign on wind spectrun[J]. Journal of applied optics,2003,24(1):11-14.
    [9]
    贺英萍. 紫外像增强器性能测试研究[D]. 西安: 西安工业大学, 2007.

    HE Yingping. The study on perfornance measurement of UV image intensifier[D]. XI’ an: Xi an Institute of Industry Press, 2007.
    [10]
    向世明, 倪国强. 光电子成像器件原理[M]. 北京: 国防工业出版社, 1999.

    XIANG Shiming, NI Guoqiang. The principle of photoelectronic imaging devices[M]. Beijing: National Defence Industry Press, 1999: 77-96.
    [11]
    程宏昌. 紫外像增强器光谱响应特性测量方法研究[J]. 应用光学,2007,28(3):305-308.

    CHENG Hongchang. Spectral response measurement of UV image intensif ier[J]. Journal of applied optics,2007,28(3):305-308.
    [12]
    付利平. 远紫外像增强器光谱响应特性研究[J]. 光谱线与光谱分析,2009,29(5):1375-1377.

    FU Liping. Spectral response measurement of FUV image intensifier[J]. Spectroscopy and Spectral Ana lysis,2009,29(5):1375-1377.
    [13]
    贺英萍, 李敏, 尹雷, 等. 紫外像增强器分辨力和视场质量测试技术研究[J]. 应用光学,2012,33(2):337-341.

    HE Yingping, LI Min, YIN Lei, et al. Resolution and fov quality of UV image intensifier[J]. Journal of Applied optics,2012,33(2):337-341.
    [14]
    WANG Shouwei. The study on resolution mcasurement of image intensifier on wide spectrum.[D]. Nanjing: Nanjing University of Science and Cchnology Prcss, 2008.
    [15]
    赵斌, 李柱. 同轴共轭透镜对斜入射平行光的聚焦衍射特性[J]. 光学学报,1999,19(3):299-305. doi: 10.3321/j.issn:0253-2239.1999.03.003

    ZHAO Bin, LI Zhu. The focus dif fraction property of axicon illuminated by incl ined plane wave[J]. Acta Optica Sinica,1999,19(3):299-305. doi: 10.3321/j.issn:0253-2239.1999.03.003
  • Related Articles

    [1]MA Shibang, LI Dong, XIE Qi, LI Hongguang, ZHANG Deng, CHU Junwei, SUN Yu'nan. Calibration technology for spectral range and signal-to-noise ratio of terahertz time-domain spectrometer[J]. Journal of Applied Optics, 2023, 44(5): 1068-1072. DOI: 10.5768/JAO202344.0503002
    [2]GONG Wulin, LI Zhanfeng, LIU Quancheng, DENG Hu, WU Zhixiang. Applications of thickness measurement method based on terahertz time-of-flight in atmospheric environment[J]. Journal of Applied Optics, 2023, 44(4): 809-815. DOI: 10.5768/JAO202344.0403001
    [3]LI Zhilei, LIU Haifeng, CHI Weiwei, ZHOU Limei, XIE Fang, LIU Yangyang. Design and application of optical system based on terahertz spectroscopy technology[J]. Journal of Applied Optics, 2022, 43(3): 409-414. DOI: 10.5768/JAO202243.0301005
    [4]XIE Yushan, HUANG Yi, ZHONG Yujie, LUO Manting, ZHANG Zhenghao, LIN Tingling, ZHONG Shuncong. Terahertz measurement method of liquid electromagnetic parameters based on Gaussian mixture model[J]. Journal of Applied Optics, 2021, 42(6): 982-988. DOI: 10.5768/JAO202142.0601006
    [5]WU Bin, YANG Yanzhao, YING Chengping, LIU Hongyuan, ZHANG Peng, WANG Hengfei. Application of terahertz spectroscopy in THDCPD isomers detection[J]. Journal of Applied Optics, 2020, 41(4): 786-790. DOI: 10.5768/JAO202041.0409903
    [6]REN Zewei, ZHAN Honglei, CHEN Sitong, LI Xinyu, ZHANG Yan, CHEN Ru, MENG Zhaohui, QIN Fankai, ZHAO Kun, BAO Rima. Detection of trace crude oil in surface sands by THz time-domain spectroscopy[J]. Journal of Applied Optics, 2020, 41(2): 361-365. DOI: 10.5768/JAO202041.0203004
    [7]Mi Yang, Wu Qiannan, Yan Shinong. Design of multiband terahertz filter[J]. Journal of Applied Optics, 2016, 37(5): 759-764. DOI: 10.5768/JAO201637.0505004
    [8]SUN Qing, DENG Yu-qiang, YU Jing, XU Tao, Chen Qing-jun. Frequency calibration of terahertz time-domain spectrometers using absorption lines of carbon monoxide[J]. Journal of Applied Optics, 2012, 33(3): 554-557.
    [9]ZHANG Xue-min, SU Yu. Design of asynchronous image data acquisition system for unmanned aerial vehicles (UAVs)[J]. Journal of Applied Optics, 2010, 31(2): 229-232.
    [10]FENG Rui-shu, LI Wei-wei, ZHOU Qing-li, MU Kai-jun, ZHANG Liang-liang, ZHANG Cun-lin. Vibrational spectrum of RDX investigated with terahertz time-domain spectroscopy[J]. Journal of Applied Optics, 2009, 30(6): 907-910.
  • Cited by

    Periodical cited type(1)

    1. 杜国军,欧宗耀,张晨阳,王春辉,李旭,李重阳. 真空环境下激光测距仪收发光轴测试方法研究. 激光技术. 2021(05): 561-565 .

    Other cited types(0)

Catalog

    Article views (909) PDF downloads (41) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return