LI Yuanyuan, WANG Chunyan, WANG Zhiqiang. F-θ lens design for high-precision semiconductor laser marking machine[J]. Journal of Applied Optics, 2020, 41(1): 202-208. DOI: 10.5768/JAO202041.0107003
Citation: LI Yuanyuan, WANG Chunyan, WANG Zhiqiang. F-θ lens design for high-precision semiconductor laser marking machine[J]. Journal of Applied Optics, 2020, 41(1): 202-208. DOI: 10.5768/JAO202041.0107003

F-θ lens design for high-precision semiconductor laser marking machine

More Information
  • Received Date: April 21, 2019
  • Revised Date: May 26, 2019
  • Available Online: March 30, 2020
  • In order to ensure the scanning quality of F-θ lens for semiconductor laser marking machine and realize the linear change of the image height and the scanning angle, it is necessary to give a certain distortion to the F-θ lens and satisfy the isoplanatic condition. Firstly, the working principle and aberration requirements of the F-θ lens were analyzed, and the appropriate glass material was selected by the light source imaging requirements of 1 064 nm semiconductor laser marking machine to reasonably distribute the focal power of each lens to ensure the isoplanatic imaging. Secondly, according to the linear imaging requirements of F-θ lens, the total distortion of the system was 1.6%, which was the sum of the actual barrel distortion and the relative distortion. Finally, in the optimization design of the optical system, these two optimal parameters were introduced to observe the system imaging changes during the optimization process. The design results show that the system modulation transfer function (MTF) curve is closed to the diffraction limit, the relative distortion of the F-θ lens is less than 0.36%, the root-mean-square (RMS) radius of each field of view (FOV) is smaller than the Airy disk diameter, and 70% energy of the whole system is concentrated in a circle with a diameter of 16 μm, the total distortion of the system is 1.58%, which meets the requirements of design index.
  • [1]
    ASTARITA A, GENNA S, LEONE C, et al. Study of the laser marking process of cold sprayed titanium coatings on aluminium substrates[J]. Optics & Laser Technology,2016,83:168-176.
    [2]
    韩仲夏. 激光技术在半导体行业中的应用[J]. 无线互联科技,2018(8):140-141. doi: 10.3969/j.issn.1672-6944.2018.08.064

    HAN Zhongxia. Application of laser technology in the semiconductor industry[J]. Wireless Internet Technology,2018(8):140-141. doi: 10.3969/j.issn.1672-6944.2018.08.064
    [3]
    JIN K H, YAHANG J S, PARK C S, et al.Telecentric f-theta lens for high-speed terahertz reflection three dimensional imaging[C]. New York: IEEE, 2014: 1-2.
    [4]
    YUREVICH V I, GRIMM V A, AFONYUSHKIN A A, et al. Optical design and performance of f-theta lenses for high-power and high-precision applications[J]. SPIE,2015,9626:1-13.
    [5]
    赵鑫. YAG激光打标机F-theta透镜的光学设计[J]. 无线互联科技,2016,7(4):1-2. doi: 10.3969/j.issn.1672-6944.2016.04.001

    ZHAO Xin. Optical design of F-theta lens for YAG laser marking machine[J]. Wireless Internet Technology,2016,7(4):1-2. doi: 10.3969/j.issn.1672-6944.2016.04.001
    [6]
    李勇, 程潇潇. 大幅面CO2激光打标机F-θ透镜的设计[J]. 轻工科技,2018,34(12):53-54.

    LI Yong, CHENG Xiaoxiao. Design of F-θ lens for large format CO2 laser marking machine[J]. Light Industry Science and Technology,2018,34(12):53-54.
    [7]
    赵鑫. CO2激光打标机F-theta透镜的光学设计[J]. 时代农机,2016,43(6):77-78.

    ZHAO Xin. Optical design of CO2 laser marking machine F-theta lens[J]. Times Agricultural Machinery,2016,43(6):77-78.
    [8]
    周燕, 沈涛. 多波长广角F-theta透镜光学设计[J]. 应用光学,2017,38(4):533-537.

    ZHOU Yan, SHEN Tao. Multi-wavelength wide-angle F-theta lens optical design[J]. Journal of Applied Optics,2017,38(4):533-537.
    [9]
    付敏敏, 陈培锋, 王英, 等. 超广角大工作面F-theta镜头的光学设计[J]. 应用光学,2011,32(6):1083-1087.

    FU Minmin, CHEN Peifeng, WANG Ying, et al. Optical design of super wide angle F-theta lens with large operation area[J]. Journal of Applied Optics,2011,32(6):1083-1087.
    [10]
    苏阳, 安志勇, 李琦, 等. 广角大相对孔径F-θ透镜光学设计[J]. 应用光学,2015,36(3):376-380.

    SU Yang, AN Zhiyong, LI Qi, et al. Optical design of wide-angle large-relative-aperture F-θ lens[J]. Journal of Applied Optics,2015,36(3):376-380.
    [11]
    王文生.现代光学系统设计[M]. 北京: 国防工业出版社, 2016: 196-208.

    WANG Wensheng.Contemporary optical system design[M]. Beijing: National Defense Industry Press, 2016: 196-208.
    [12]
    刘喆, 刘海鸥. 基于ZEMAX的F-θ透镜的光学设计[J]. 光电技术应用,2016,31(2):5-10. doi: 10.3969/j.issn.1673-1255.2016.02.002

    LIU Zhe, LIU Haiou. Optical design of F-θ lens based on ZEMAX[J]. Electro-Optic Technology Application,2016,31(2):5-10. doi: 10.3969/j.issn.1673-1255.2016.02.002
    [13]
    贾德伟, 卢艳丽, 胡婷婷. SrTiO3光催化材料的研究进展[J]. 材料导报,2014,28(3):8-11.

    JIA Dewei, LU Yanli, HU Tingting. Research progress of SrTiO3 photocatalytic materials[J]. Material Guide,2014,28(3):8-11.
    [14]
    王航, 张国玉, 王远, 等. 高轨道准直式红外地球模拟光学系统设计[J]. 光学仪器,2014,36(1):26-27.

    WANG Hang, Zhang Guoyu, WANG Yuan, et al. Design of optical system for high orbit collimating infrared earth simulator[J]. Optical Instruments,2014,36(1):26-27.
  • Cited by

    Periodical cited type(4)

    1. 方波浪,武俊杰,王晟,吴振杰,李天植,张洋,杨鹏翎,王建国. 基于物理信息神经网络的金属表面吸收率测量方法. 物理学报. 2024(09): 126-133 .
    2. 张金玉,金尚忠,张彪,吴磊,俞兵,袁良,黎高平. 光腔衰荡法数据截取对时间常数测量精度的影响分析. 应用光学. 2023(01): 153-158 . 本站查看
    3. 张彪,张金玉,吉晓,段园园,吴磊,黎高平,于东钰,阴万宏. 测量大口径光学元件反射率用精密扫描系统误差分析. 应用光学. 2023(02): 380-385 . 本站查看
    4. 孟宁喜,郭伟,吴立志,沈瑞琪,叶迎华,张伟. 激光诱导多孔阳极氧化铝等离子体的特性. 中国激光. 2019(02): 271-277 .

    Other cited types(6)

Catalog

    Article views (903) PDF downloads (57) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return