Citation: | ZHOU Lijun, LIU Yu, BAI Lu, RU Zhibing, YU Shuai. Sample generation method based on GAN and adaptive transfer learning[J]. Journal of Applied Optics, 2020, 41(1): 120-126. DOI: 10.5768/JAO202041.0102009 |
[1] |
罗佳, 黄晋英. 生成式对抗网络研究综述[J]. 仪器仪表学报,2019,40(3):74-84.
LUO Jia, HUANG Jinying. Generative adversarial network: An overview[J]. Chinese Journal of Scientific Instrument,2019,40(3):74-84.
|
[2] |
李志欣, 施智平, 张灿龙, 等. 混合生成式和判别式模型的图像自动标注[J]. 中国图像图形学报,2015,20(5):687-699.
LI Zhixin, SHI Zhiping, ZHANG Canlong, et al. Hybrid generative/discriminative model for automatic image annotation[J]. Journal of Image and Graphics,2015,20(5):687-699.
|
[3] |
曹仰杰, 贾丽丽, 陈永霞, 等. 生成式对抗网络及其计算机视觉应用研究综述[J]. 中国图像图形学报,2018,23(10):1433-1449.
CAO Yangjie, JIA Lili, CHEN Yongxia, et al. Review of computer vision based on generative adversarial networks[J]. Journal of Image and Graphics,2018,23(10):1433-1449.
|
[4] |
王坤峰, 苟超, 段艳杰, 等. 生成式对抗网络GAN的研究进展与展望[J]. 自动化学报,2017,43(3):321-332.
WANG Kunfeng, GOU Chao, DUAN Yanjie, et al. Generative adversarial networks: The state of the art and beyond[J]. Acta Automatica Sinica,2017,43(3):321-332.
|
[5] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature,2015,521(7553):436-444. doi: 10.1038/nature14539
|
[6] |
BENGIO Y, THIBODEAU-LAUFER E, ALAIN G, et al. Deep generative stochastic networks trainable by backprop[J]. PMLR,2014,32(2):226-234.
|
[7] |
MIRZA M, OSINDERO S. Conditional generative adversarial nets[J/OL]. arXiv, 2014, 1411: 1784. http://www.arXiv.org
|
[8] |
GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein gans[J/OL]. 2017, 1704: 00028.http://www.arXiv org.
|
[9] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[M/OL]. New York: arXiv, 2014: 2672-2680. http://www.arXiv org.
|
[10] |
MAO X, LI Q, XIE H, et al. Least squares generative adversarial networks[C]//2017 IEEE International Conference on Computer Vision(ICCV). USA: IEEE, 2017: 2813-2821.
|
[11] |
LOTTER W, KREIMAN G, COX D. Unsupervised learning of visual structure using predictive generative networks[J/OL]. arXiv, 2015: 1511: 06380. http://www.arXiv org.
|
[12] |
YU L T, ZHANG W N, WANG J, et al. SeqGAN: Sequence generative adversarial nets with policy gradient[C]. New York: arXiv, 2017: 2852-2858.
|
[13] |
GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein gans[C]//Advances in Neural Information Processing Systems. NewYork: arXiv, 2017: 5769-5779.
|
[14] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recongnition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.USA: IEEE, 2016: 770-778.
|
[15] |
GitHub, Inc. Improved_wgan_training[M/OL]. USA: GitHub Inc., 2015. https://github.com/igul222/improved_wgan_training.
|
[16] |
GitHub, Inc. Progressive_growing_of_gans[M/OL]. USA: GitHub Inc., 2015. https://github.com/tkarras/progressive_growing_of_gans.
|
1. |
赵世达,王树才,白宇,郝广钊,涂本帅. 基于生成对抗网络与ICNet的羊骨架图像实时语义分割. 农业机械学报. 2021(02): 329-339+380 .
![]() |