XU Sihua, PENG Xiaoqiang, TIE Guipeng, CHEN Shanyong, XIONG Yupeng. Study on thermal characteristic of homogeneous material reflective system[J]. Journal of Applied Optics, 2020, 41(1): 60-66. DOI: 10.5768/JAO202041.0101009
Citation: XU Sihua, PENG Xiaoqiang, TIE Guipeng, CHEN Shanyong, XIONG Yupeng. Study on thermal characteristic of homogeneous material reflective system[J]. Journal of Applied Optics, 2020, 41(1): 60-66. DOI: 10.5768/JAO202041.0101009

Study on thermal characteristic of homogeneous material reflective system

More Information
  • Received Date: April 23, 2019
  • Revised Date: June 05, 2019
  • Available Online: March 30, 2020
  • In order to expound the temperature characteristics of homogeneous material reflective system in principle, and provide the basis for the design of optical system, the temperature characteristics of single mirror, coaxial multi-mirror reflective system and off-axis reflective system were introduced successively, which were based on the thermal deformation characteristics and its calculation method, and the optical system focus was taken as the research object. Meanwhile, the corresponding thermal aberration model of reflective system was established. The simulation results show that the change of focal length with temperature in the off-axis three-mirror reflective system is completely consistent with the thermal deformation amount of corresponding lens barrel, and it has good imaging quality in the range of large temperature difference. The thermal defocus caused by the temperature change can be compensated by the lens barrel, which verifies the correctness of the theoretical model and draw a conclusion that there is no thermal aberration in the homogeneous material reflective system in the condition of uniform temperature field. Therefore, the optical system, especially the infrared system with obvious thermal aberration effect has good temperature adaptability when the homogeneous material reflective system is adopted.
  • [1]
    POVEY V. Athermalisation techniques in infra red systems[C]. USA: SPIE, 1986: 142-153.
    [2]
    刘莹莹. 红外无热化摄远物镜设计与检测[D]. 长春: 长春理工大学, 2014.

    LIU Yinyin. Optical design and test of athermalized infrared telephoto objective[D]. Changchun: Changchun University of Science and Technology, 2014.
    [3]
    庞广宁, 王春艳, 刘欢, 等. 红外投影系统光学被动无热化设计[J]. 长春理工大学学报(自然科学版),2017,40(4):38-40.

    PANG Guangning, WANG Chunyan, LIU Huan, et al. Passive optical athermalization design in infrared projection optical system[J]. Journal of Changchun University of Science and Technology(Natural Science Edition),2017,40(4):38-40.
    [4]
    高婧. 机载导航热像仪无热化光学系统设计[D]. 西安: 西安工业大学, 2013.

    GAO Jing. Athermalizing optical system design of airborne navigation infrared imager[D]. Xi'an: Xi’an Technological University, 2013.
    [5]
    谢洪波, 孟庆斌, 杨磊, 等. 中波红外光学系统无热化设计和冷反射抑制[J]. 应用光学,2017,38(3):352-357.

    XIE Hongbo, MENG Qingbin, YANG Lei, et al. Athermalization and suppression of narcissus for medium-wave infrared optical system[J]. Journal of Applied Optics,2017,38(3):352-357.
    [6]
    VUKOBRATOVICH D, SCHAEFER J P. Large stable aluminum optics for aerospace applications[C]. USA: SPIE, 2011: 81250T-13.
    [7]
    韩旭, 张健, 高天元, 等. 透射式红外光学系统光机热集成分析方法的研究[J]. 红外技术,2018,40(12):1136-1141.

    HAN Xu, ZHANG Jian, GAO Tianyuan, et al. Research on thermal integrated optomechanical analysis method of transmissive infrared optical systems[J]. Infrared Technology,2018,40(12):1136-1141.
    [8]
    白瑜. 长焦距宽光谱红外双波段消热差探测成像光学系统研究[D]. 成都: 电子科技大学, 2017.

    BAI Yu. Research on infrared dual-band athermal detection imaging system with long focal length and wide spectrum[D]. Chengdu: University of Electronic Science and Technology of China, 2017.
    [9]
    KUCUKCELEBI D. Optical design of an athermalised dual field of view step zoom optical system in MWIR[C]. USA: SPIE, 2017: 103750S-9.
    [10]
    JIANG K, JIANG B, LIU K, et al. Athermalization of infrared dual field optical system based on wavefront coding[C]. USA: SPIE, 2017: 102563X-6.
    [11]
    BOYD A M. Optical design of athermal, multispectral, radial GRIN lenses[C]. USA: SPIE, 2017: 1018109-11.
    [12]
    许求真. 经典卡塞格林系统热差分析[J]. 激光与红外,2011,41(4):435-441. doi: 10.3969/j.issn.1001-5078.2011.04.016

    XU Qiuzhen. Analysis on thermal difference of classical Cassegrain system[J]. Laser & Infrared,2011,41(4):435-441. doi: 10.3969/j.issn.1001-5078.2011.04.016
    [13]
    刘琳, 李林. 被动消热差的大口径离轴光学系统[J]. 激光与红外,2017,47(11):1428-1432. doi: 10.3969/j.issn.1001-5078.2017.11.018

    LIU Lin, LI Lin. Large aperture off-axis optical system with passive athermalization[J]. Laser & Infrared,2017,47(11):1428-1432. doi: 10.3969/j.issn.1001-5078.2017.11.018
    [14]
    王臣臣, 邹刚毅, 庞志海, 等. 大视场可见红外一体化光学系统设计[J]. 红外与激光工程,2016,45(10):164-169.

    WANG Chenchen, ZOU Gangyi, PANG Zhihai, et al. Design of large field for visible/infrared integrated optical system[J]. Infrared and Laser Engineering,2016,45(10):164-169.
    [15]
    王小勇, 郭崇岭, 胡永力. 空间同轴三反相机前镜身结构设计与验证[J]. 光子学报,2011,40(S1):34-40.

    WANG Xiaoyong, GUO Chongling, HU Yongli. Design and verification for front mirror-body structure of on-axis three mirror anastigmatic space camera[J]. Acta Photonica Sinica,2011,40(S1):34-40.
    [16]
    TAMAGAWA Y, TAJIME T. Expansion of an athermal chart into a multilens system with thick lenses spaced apart[J]. Optical Engineering,1996,35(10):3001-3007. doi: 10.1117/1.600984
  • Cited by

    Periodical cited type(2)

    1. 陈博帆,薛要克,沈阳,叶水福,王虎,解永杰. 轻型全天时星敏感器光学系统设计. 光子学报. 2024(12): 63-74 .
    2. 王上,张星祥,朱俊青. 空间相机全铝合金光机结构的设计与分析. 红外技术. 2022(04): 364-370 .

    Other cited types(4)

Catalog

    Article views (784) PDF downloads (22) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return