WANG Li, GU Yingying, GUO Shaogang, LI Tao, CHU Yi. Space non-cooperative target spin rate measurement method and experiment[J]. Journal of Applied Optics, 2019, 40(6): 1091-1096. DOI: 10.5768/JAO201940.0603002
Citation: WANG Li, GU Yingying, GUO Shaogang, LI Tao, CHU Yi. Space non-cooperative target spin rate measurement method and experiment[J]. Journal of Applied Optics, 2019, 40(6): 1091-1096. DOI: 10.5768/JAO201940.0603002

Space non-cooperative target spin rate measurement method and experiment

More Information
  • Received Date: June 19, 2019
  • Revised Date: September 11, 2019
  • In order to measure the motion state of the unstable and fast-swirl non-cooperative target, a measurement method based on sequence images of monocular camera was proposed. First, the measurement principle was derived and proved according to the projection geometry of the target and the detector. Then, considering the characteristics of the space lighting environment, an image processing method based on maximally stable extremal regions(MSER) features was proposed to extract the projection angle. Moreover, according to the multi-frame sequence projection angle value, the spin rate of the non-cooperative target was calculated by setting a reasonable polynomial fitting model. Finally, the effectiveness and measurement accuracy of the proposed method were further verified by on-orbit data. Experimental results show that, for the 60°/s fast-spinning non-cooperative target, a monocular camera with 1Hz frame rate is used to observe the target in 150 seconds, the mean measured value by this method is 60.07° and the standard deviation is 0.05°/s. Therefore, a stable, reliable and highly precision spatial non-cooperative target motion state measurement is achieved.
  • [1]
    FLORES A A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68(8):1-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9102ad0983a921fa61bef7ff3fa63657
    [2]
    SHAN M, GUO J, GILL E. Review and comparison of active space debris capturing and removal methods[J]. Progress in Aerospace Sciences, 2016, 80:18-32. doi: 10.1016/j.paerosci.2015.11.001
    [3]
    OPROMOLLA R, FASANO G, RUFINO G, et al. Uncooperative pose estimation with a LIDAR-based system[J]. Acta Astronautica, 2015, 110:287-297. doi: 10.1016/j.actaastro.2014.11.003
    [4]
    YIN F, CHOU W, WU Y, et al. Sparse unorganized point cloud based relative pose estimation for uncooperative space target[J]. Sensors, 2018, 18(4):1009. doi: 10.3390/s18041009
    [5]
    PALMERINI G B, SABATINI M, GASBARRI P. Guidelines for active removal of non-functional targets designed to assist rendezvous and capture[C]// Big Sky, MT, USA: IEEE Aerospace Conference. IEEE, 2016: 1-13.
    [6]
    李荣华, 李金明, 陈凤, 等.高轨失稳目标单载荷相对位姿测量方法[J].宇航学报, 2017, 38(10):1105-1113. http://d.old.wanfangdata.com.cn/Periodical/yhxb201710011

    LI Ronghuang, LI Jinming, CHEN Feng, et al. A method of relative pose measurement by single load for GEO instability target[J]. Journal of Astronautics, 2017, 38(10):1105-1113. http://d.old.wanfangdata.com.cn/Periodical/yhxb201710011
    [7]
    SHTARK T, GURFILl P. Tracking a non-cooperative target using real-time stereovision-based control: an experimental study[J]. Sensors, 2017, 17(4):735. doi: 10.3390/s17040735
    [8]
    LI S, LIANG B, GAO X, et al. Pose measurement method of non-cooperative circular feature based on line structured light[C]//Macau SAR, China: IEEE International Conference on Information and Automation. IEEE, 2017: 374-380.
    [9]
    OUMER N W, KRIEGEL S, ALI H, et al. Appearance learning for 3D pose detection of a satellite at close-range[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2017, 125:1-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=54f2f933bec37ec43904f62537834156
    [10]
    SHARMA S, AMICO D S. Comparative assessment of techniques for initial pose estimation using monocular vision[J]. Acta Astronautica, 2016, 123(1-2):435-445. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=18e383021c97d3c3a8665cb6345d2fd7
    [11]
    PARTICULAR I, POSE. Shape reconstruction of a noncooperative spacecraft using camera and range measurements[J]. International Journal of Aerospace Engineering, 2017, 4535316:1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=23cbdfb30fbd9d0065871c61e3c36a16
    [12]
    TZSCHICHHOLZ T, BOGE T, SCHILLING K. Relative pose estimation of satellites using PMD-/CCD-sensor data fusion[J]. Acta Astronautica, 2015, 109(2015):25-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=26154461e3376b1edce59d5986c3a6ee
    [13]
    NING M, ZHANG S, WANG S. A non-cooperative satellite feature point selection method for vision-based navigation system[J]. Sensors, 2018, 18(3):854-871. doi: 10.3390/s18030854
    [14]
    荆楠, 李创, 钟培峰, 等.光度数据反演临近空间低速点目标形状尺寸信息[J].光学精密工程, 2017, 25(7): 1738-1747. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201707006

    JING Nan, LI Chuang, ZHONG Peifeng, et al.. Inversion of low dynamic vehicle shape and dimension information using non-resolved photometric data in near space[J]. Optics and Precision Engineering, 2017, 25(7): 1738-1747. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201707006
    [15]
    HARTLEY R, ZISSERMAN A. Multiple view geometry in computer vision[M].Lundun: Cambridge University Press, 2003.
    [16]
    LINARES R, PALMER D, THOMPSON D, et al. Photometric data from non-resolved objects for space object characterization and improved atmospheric modeling[J]. Advances in the Astronautical Sciences, 2014, 152:1889-1899. http://www.researchgate.net/publication/292158337_Photometric_data_from_non-resolved_objects_for_space_object_characterization
  • Related Articles

    [1]YAO Hong-bing, LI Liang-wan, PING Jie, GU Ji-nan, MA Gui-dian, ZENG Xiang-bo, ZHENG Xue-liang. Defect detection for resin lenses based on digital image processing technology[J]. Journal of Applied Optics, 2013, 34(3): 442-446.
    [2]ZHAO Yu-liang, XU Zhao-lin. Autocollimation location system of aerial camera lens- focus plane based on image processing technology[J]. Journal of Applied Optics, 2012, 33(2): 288-292.
    [3]WU Ling-ling, WANG Xing, CHEN Jing, WU Ji-an, ZHANG Wei-guang. Sub-pixel calibration of CCD in Moiré fringes measurement based on image processing[J]. Journal of Applied Optics, 2011, 32(5): 955-959.
    [4]YAN Zong-qun, LI Gang, ZHANG Chu, HOU Yong-jia. Real-time multi-target infrared image processing system based on double TMS320DM642 processors[J]. Journal of Applied Optics, 2010, 31(4): 562-566.
    [5]WANG Yong, DUAN Zhi-xuan, JIANG Li-qiao, ZHAO Dai-qing, WANG Xiao-han. Measurement of micro-scale flame based on digital image processing[J]. Journal of Applied Optics, 2009, 30(4): 631-634.
    [6]YAO Rui, LI Qi, YIN Qi-guo, WANG Qi. Study on pre-processing of THz laser active image[J]. Journal of Applied Optics, 2009, 30(2): 233-235.
    [7]FU Wen-qing, XU Feng, WANG Yong-liang. High precision lens jacket method based on image processing[J]. Journal of Applied Optics, 2009, 30(2): 229-232.
    [8]LI Jian-xin, LI Ju-chun. Image processing of spherical-aberration auto-measurement system based on Hartmann method[J]. Journal of Applied Optics, 2007, 28(5): 531-535.
    [9]SUN Lian-jun, ZHANG Jun-ju, CHEN Qiao, CHANG Ben-kang, QIAN Yun-sheng. Study of uncooled infrared image processing system based on Nios Ⅱ[J]. Journal of Applied Optics, 2007, 28(1): 7-11.
    [10]JIN Wen-rui, JIANG Ben-he, JI Shu-bo. Image Processing of Near-Infrared Rail Abrasion Detection System[J]. Journal of Applied Optics, 2004, 25(3): 41-44.
  • Cited by

    Periodical cited type(3)

    1. 袁屹杰,纪明,张卫国,伊兴国,王毅,施道云. 菱形HSLDS隔振器负刚度机构质量及摩擦力影响分析. 应用光学. 2021(02): 207-214 . 本站查看
    2. 姜昌录,袁良,汪建刚,李辉,王生云,康登魁,杨朋利,王雷. 光电成像系统动态调制传递函数测量装置. 应用光学. 2021(04): 592-596 . 本站查看
    3. 田留德,王涛,赵怀学,刘艺宁,赵建科,周艳,刘朝晖. 利用统计矩计算的图像运动光学传递函数. 光学学报. 2017(12): 169-175 .

    Other cited types(1)

Catalog

    Article views (592) PDF downloads (27) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return