ZHANG Taijiang, LI Yongjun, ZHAO Shanghong, WANG Xingyu, WANG Weilong. Design of space optical backbone network simulation platform based on OPNET and STK[J]. Journal of Applied Optics, 2019, 40(5): 901-909. DOI: 10.5768/JAO201940.0508001
Citation: ZHANG Taijiang, LI Yongjun, ZHAO Shanghong, WANG Xingyu, WANG Weilong. Design of space optical backbone network simulation platform based on OPNET and STK[J]. Journal of Applied Optics, 2019, 40(5): 901-909. DOI: 10.5768/JAO201940.0508001

Design of space optical backbone network simulation platform based on OPNET and STK

More Information
  • Received Date: January 24, 2019
  • Revised Date: March 13, 2019
  • The space optical backbone network is the core of China's spacial information network. In order to verify the feasibility of the network protocol, the network architecture and the key technologies in the space optical backbone network, a space optical backbone network simulation platform based on OPNET and satellite tool kit(STK) was designed.A space-based backbone network consisting of 4 geostationary earth orbit (GEO) satellites and a space-based access network consisting of 10 low earth orbit (LEO) satellites were designed.And the optical network protocol simulation model from the physical layer to the application layer and the 3 node process models of LEO, GEO and ground stations were developed, moreover, the optical backbone network was simulated and tested. The simulation results show that the maximum delay of the space optical backbone network is 5.48 s, the minimum is 0.35 s, and the global average network delay is 1.06 s. The maximum real-time throughput of the ground station is 0.88 Gbps with a minimum of 0.3 Gbps. The research results indicate that the platform can accurately simulate the function of spatial optical backbone network, meet the needs of efficient transmission of space services, and provide simulation platform support for spatial optical backbone network performance verification.
  • [1]
    王为众, 赵永利, 郁小松, 等.一种适用于天地一体化网络的卫星通信港设计[J].无线电通信技术, 2018(2):124-129. doi: 10.3969/j.issn.1003-3114.2018.02.05

    WANG Weizhong, ZHAO Yongli, YU Xiaosong, et al. A design of satellite communication formation suitable for integrated space-ground network[J]. Radio Communications Technology, 2018(2):124-129. doi: 10.3969/j.issn.1003-3114.2018.02.05
    [2]
    张亚生, 孙晨华, 谷聚娟.天地一体化网络协议研究[J].无线电工程, 2018, 48(3):178-182. doi: 10.3969/j.issn.1003-3106.2018.03.03

    ZHANG Yasheng, SUN Chenhua, GU Jujuan. Research on protocols of space-ground integrated network[J]. Radio Engineering, 2018, 48(3) : 178-182. doi: 10.3969/j.issn.1003-3106.2018.03.03
    [3]
    陈荷, 乔洋, 陈晶, 等.面向空间信息网络的骨干接入一体化MEO卫星系统设计[J].红外与激光工程, 2016, 45(8):67-72. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201608012

    CHEN He, QIAO Yang, CHEN Jing, et al. Backbone-access integration space information network system design based on MEO satellite[J].Infrared and Laser Engineering, 2016, 45(8):67-72. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201608012
    [4]
    毕明喆, 苏煜炜, 马万卓, 等.基于光纤激光相控阵的空间激光通信系统[J].应用光学, 2016, 37(6):938-941. http://www.yygx.net/CN/abstract/abstract10880.shtml

    BI Mingzhe, SU Yuwei, MA Wanzhuo, et al. Space laser communication system based on fiber laser phased array[J]. Journal of Applied Optics, 2016, 37(6):938-941. http://www.yygx.net/CN/abstract/abstract10880.shtml
    [5]
    梁俊, 胡猛, 管桦, 等.空间骨干网络体系架构与关键技术研究[J].空军工程大学学报, 2016, 17(4):52-58. doi: 10.3969/j.issn.1009-3516.2016.04.010

    LIANG Jun, HU Meng, GUAN Hua, et al. Research on space backbone network architecture and key technologies[J]. Journal of Air Force Engineering University, 2016, 17(4):52-58. doi: 10.3969/j.issn.1009-3516.2016.04.010
    [6]
    黄娟.基于MATLAB/STK的卫星通信场景仿真设计与实现[D].合肥: 安徽大学, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3018660

    HUANG Juan. The design and implementation of simulation for satellite communication scene based on MATLAB/STK[D]. Hefei: Anhui University, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3018660
    [7]
    李小卓.基于OPNET的卫星通信系统仿真设计及性能分析[D].北京: 北京邮电大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10013-1018097314.htm

    LI Xiaozhuo. Simulation design and performance analysis of satellite communication system based on OPNET[D]. Beijing: Beijing University of Posts and Telecommunications, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10013-1018097314.htm
    [8]
    翟政安.下一代数据中继卫星系统发展思考[J].飞行器测控学报, 2016, 35(2):89-97. http://d.old.wanfangdata.com.cn/Periodical/fxqckxb201602001

    ZHAI Zheng'an. Development of the next generation data relay satellite systems[J]. Journal of Spacecraft TT&C Technology, 2016, 35(2):89-97. http://d.old.wanfangdata.com.cn/Periodical/fxqckxb201602001
    [9]
    KAUSHAL H, KADDOUM G. Optical communication in space: challenges and mitigation techniques[J]. IEEE Communications Surveys & Tutorials, 2017:19(1):57-96. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_682538f2321fe4e05847c40485186f13
    [10]
    MANSOUR A, MESLEH R, ABAZA M. New challenges in wireless and free space optical communications[J]. Optics & Lasers in Engineering, 2017, 89:95-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5ee6576f0d00db2667fdccb4def91895
    [11]
    YAO H, WANG L, WANG X, et al. The space-terrestrial integrated network: An overview[J]. IEEE Communications Magazine, 2018, 56(9):178-185. doi: 10.1109/MCOM.2018.1700038
    [12]
    吴继礼, 李勇军, 赵尚弘. Walker-δ星座轨道间激光链路的稳定性研究[J].应用光学, 2011, 32(1):155-160. doi: 10.3969/j.issn.1002-2082.2011.01.033

    WU Jili, LI Yongjun, ZHAO Shanghong. Stability of inter-plane laser links in walker-δ constellation[J]. Journal of Applied Optics, 2011, 32(1):155-160. doi: 10.3969/j.issn.1002-2082.2011.01.033
    [13]
    刘治国, 马悦, 史二鑫.卫星网络协议跨层优化机制[J].计算机工程与设计, 2016, 37(2):303-307. http://d.old.wanfangdata.com.cn/Periodical/jsjgcysj201602005

    LIU Zhiguo, MA Yue, SHI Erxin. Cross-layer optimization mechanism of satellite network protocol[J]. Computer Engineering and Design, 2016, 37(2):303-307. http://d.old.wanfangdata.com.cn/Periodical/jsjgcysj201602005
    [14]
    吴应明, 刘兴, 罗广军, 等.空间光通信网络技术的研究进展及架构体系[J].光通信技术, 2017(11):50-53. http://d.old.wanfangdata.com.cn/Periodical/gtxjs201711012

    WU Yingming, LIU Xing, LUO Guangjun, et al. Research progress and structure system of space optical communication network technology[J].Optical Communication Technology, 2017(11):50-53. http://d.old.wanfangdata.com.cn/Periodical/gtxjs201711012
    [15]
    卢勇, 赵有健, 孙富春, 等.卫星网络路由技术[J].软件学报, 2014, 25(5):1085-1100. http://d.old.wanfangdata.com.cn/Periodical/rjxb201405012

    LU Yong, ZHAO Youjian, SUN Fuchun, et al. Routing techniques on satellite networks[J]. Journal of Software, 2014, 25(5):1085-1100. http://d.old.wanfangdata.com.cn/Periodical/rjxb201405012
    [16]
    张杰, 郁小松.天地一体化网络中卫星通信港控制架构与路由技术研究[J].无线电通信技术, 2017, 43(2):1-5. doi: 10.3969/j.issn.1003-3114.2017.02.01

    ZHANG Jie, YU Xiaosong. Control and routing of satellite communication port in integrated space-ground networks[J].Radio Communications Technology, 2017, 43(2):1-5. doi: 10.3969/j.issn.1003-3114.2017.02.01
  • Related Articles

    [1]LI Hongqiang, WANG Runjie, ZHANG Meiling, GAO Qian, ZHANG Sai, SONG Wenchao, MAO Quanhua, LI Enbang, Juan Daniel Prades Garcia. Edge filter temperature demodulation system based onarrayed wave-guide grating[J]. Journal of Applied Optics, 2021, 42(5): 898-905. DOI: 10.5768/JAO202142.0503004
    [2]Lu Chuang, Zhao Meirong, Wang Shuang, Liu Tiegen, Jiang Junfeng, Yan Jinling, Zheng Yelong. Deviation calibration method for fiber Bragg grating demodulation system based on tunable Fabry-Perot filter drived by triangular wave[J]. Journal of Applied Optics, 2017, 38(1): 147-152. DOI: 10.5768/JAO201738.0108002
    [3]WANG Jian, TANG Feng, REN Li-yong, XU Jin-tao, HU Man-li. Vibration demodulation using fiber grating based on tunable Gaussian filter[J]. Journal of Applied Optics, 2010, 31(6): 993-999.
    [4]YANG Peng-ling, WANG Qun-shu, FENG Guo-bin, LIU Fu-hua, CHENG Jian-ping. A dynamic strain sensor with fiber Bragg gratings[J]. Journal of Applied Optics, 2008, 29(supp): 105-108.
    [5]CHENG Shu-hong, LI Zhi-quan. Design of strain measurement system with embedded fiber Bragg grating[J]. Journal of Applied Optics, 2007, 28(5): 619-622.
    [6]CHEN Jian-jun, ZHANG Wei-gang, TU Qin-chang, ZOU Yu-jiao. Fiber Bragg grating pressure sensor insensitive to temperature[J]. Journal of Applied Optics, 2007, 28(1): 77-81.
    [7]LI Zhi-quan, LI Ya-ping, ZHU Dan-dan, LI Li-xin. Demodulation scheme for filtering method based fiber Bragg grating sensing[J]. Journal of Applied Optics, 2006, 27(4): 327-331.
    [8]ZHU Dan-dan, WANG Hai-fang, ZHANG Ran, LI Ya-ping1, YAN Li-juan, ZHANG Jun-jie. Strain Measuring System Based on Chirped Gratings and Edge Linear Filtering Demodulation Technology[J]. Journal of Applied Optics, 2005, 26(4): 50-52.
    [9]LI Zhi-quan, XU Ming-yan, TANG Jing, CHEN Ying, ZHAO Yan-tao. Study on Techniques of Signal Demodulation in Fiber Bragg Grating Sensing System[J]. Journal of Applied Optics, 2005, 26(4): 36-41.
    [10]LI Zhi-quan, WANG Li, HUANG Li-juan, ZHANG Xiao-ming, ZHU Dan-dan. Study on Refractive Index and Concentration Sensor Based on Long-Period Fiber Grating[J]. Journal of Applied Optics, 2004, 25(4): 48-50.
  • Cited by

    Periodical cited type(1)

    1. 何煦,马云灿,马骁,曹柱荣,喻寅,银颖,李晶,杨靖,孟立民,李军,陶天炯,杨昊,蒋均. 面向精密实验的飞秒激光精密加工技术研究进展. 强激光与粒子束. 2025(01): 138-150 .

    Other cited types(0)

Catalog

    Article views (1300) PDF downloads (72) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return