ZHANG Qiang, GAO Jun, FAN Zhiguo, WANG Zhenwu, YAN Yu. Fog image reconstruction using target and atmospheric polarization information[J]. Journal of Applied Optics, 2019, 40(5): 829-837. DOI: 10.5768/JAO201940.0502007
Citation: ZHANG Qiang, GAO Jun, FAN Zhiguo, WANG Zhenwu, YAN Yu. Fog image reconstruction using target and atmospheric polarization information[J]. Journal of Applied Optics, 2019, 40(5): 829-837. DOI: 10.5768/JAO201940.0502007

Fog image reconstruction using target and atmospheric polarization information

More Information
  • Received Date: January 28, 2019
  • Revised Date: March 26, 2019
  • Combining the difference between target polarization information and atmospheric polarization information, an image reconstruction method based on the polarization information of target and atmosphere was proposed. Int this method, firstly, the atmospheric light image and target light image are separated from the light intensity image, the atmospheric light polarization information and target light polarization information are analyzed respectively, and the polarization defogging model is constructed. Secondly, the Gaussian filtering method fused with image gradient information is used to estimate the atmospheric light intensity and target light intensity, the atmospheric light polarization degree and target light polarization degree are calculated respectively.Then, the threshold segmentation method of 3σ rule is used to estimate the atmospheric light intensity at the infinite distance in the atmospheric light image space and finally the target image can be reconstructed. Field experiments were carried out under different weather conditions.The experimental results show that the method proposed can recover the target information well in fog, rain and snow weathers, and the entropy of reconstructed image increases by about 40%, the standard deviation of gray level increases by about 90% and the average gradient and edge strength increase by 3 times.
  • [1]
    NARASIMHAN S G, NAYAR S K. Contrast restoration of weather degraded images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724. doi: 10.1109/TPAMI.2003.1201821
    [2]
    NARASIMHAN S G, NAYAR K. Vision and the atmosphere[J]. International Journal of Computer Vision, 2002, 48(3): 233-254. doi: 10.1023/A:1016328200723
    [3]
    NARASIMHAN S G, NAYAR K. Vision in bad weather[J]. International Journal of Computer Vision, 2002, 48(3): 233-254. doi: 10.1023/A:1016328200723
    [4]
    高隽, 毕冉, 赵录建, 等.利用偏振信息的雾天图像全局最优重构[J].光学精密工程, 2017, 25(8): 2212-2220. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201708029

    GAO J, BI R, ZHAO L J, et al. Global optimized hazed image reconstruction based on polarization information[J]. Optics and Precision Engineering, 2017, 25(8): 2212-2220. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201708029
    [5]
    TAN R. Visibility in bad weather from a single image[C]//Proceedings of IEEE conference on computer vision and pattern recognition, USA : IEEE, 2008: 1-8.
    [6]
    HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. doi: 10.1109/TPAMI.2010.168
    [7]
    SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Instant dehazing of images using polarization[J]. IEEE, 2001, 1: I-325-I-332. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026610010
    [8]
    SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Polarization-based vision through haze[J]. Applied Optics, 2003, 42(3): 511-525. doi: 10.1364/AO.42.000511
    [9]
    NAMER E, SCHECHNER Y Y. Advanced visibility improvement based on polarization filtered images[J]. SPIE, 2005, 5888:588805-1-10. http://cn.bing.com/academic/profile?id=94b2f86d91b2d4171a93a5e6f132a68c&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    NAYAR S K, NARASIMHAN S G. Vision in bad weather[C]. IEEE conference on computer vision, USA: IEEE, 1999, 2: 820-827.
    [11]
    赵录建, 高隽, 毕冉, 等.基于最大和最小光强图像的偏振去雾方法[J].应用光学, 2017, 38(3): 415-420. http://www.yygx.net/CN/abstract/abstract10952.shtml

    ZHAO Lujian, GAO Jun, BI Ran, et al. Polarization defogging method based on maximum and minimum intensity images[J]. Journal of Applied Optics, 2017, 38(3): 415-420. http://www.yygx.net/CN/abstract/abstract10952.shtml
    [12]
    代晴晴, 范之国, 宋强, 等.全局参数自动估计的彩色图像偏振去雾方法[J].应用光学, 2018, 39(4): 511-517. http://www.yygx.net/CN/abstract/abstract11141.shtml

    DAI Qingqing, FAN Zhiguo, SONG Qiang, et al. Polarization defogging method for color image based on automatic estimation of global parameters[J]. Journal of Applied Optics, 2018, 39(4): 511-517. http://www.yygx.net/CN/abstract/abstract11141.shtml
    [13]
    TAREL J P, HAUTIERE N. Fast visibility restoration from a single color or gray level image[J]. IEEE Conference on Computer Vision, 2009, 30(2): 2201-2208. http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201305012
    [14]
    怀宇, 范之国, 孙洁, 等.三通棱镜同时偏振测量系统的标定[J].光电工程, 2015, 42(11): 18-24. doi: 10.3969/j.issn.1003-501X.2015.11.004

    HUAI Yu, FAN Zhiguo, SUN Jie, et al. Calibration of the three links prism simultaneous polarization measurement system[J]. Opto-Electronic Engineering, 2015, 42(11): 18-24. doi: 10.3969/j.issn.1003-501X.2015.11.004
    [15]
    孙洁, 高隽, 怀宇, 等.全天域大气偏振模式的实时测量系统[J].光电工程, 2016, 43(9): 45-50, 55. doi: 10.3969/j.issn.1003-501X.2016.09.008

    SUN Jie, GAO Jun, HUAI Yu, et al. Real-time measurement system for the pattern of all skylight polarization[J]. Opto-Electronic Engineering, 2016, 43(9): 45-50, 55. doi: 10.3969/j.issn.1003-501X.2016.09.008
    [16]
    WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi: 10.1109/TIP.2003.819861
    [17]
    刘成, 高隽, 范之国, 等.大气能见度对光偏振特性的影响[J].传感器与微系统, 2018, 37(6): 26-29. http://d.old.wanfangdata.com.cn/Periodical/cgqjs201806008

    LIU Cheng, GAO Jun, FAN Zhiguo, et al. Influence of atmospheric visibility on polarization property of light[J]. Transducer and Microsystem Technologies, 2018, 37(6): 26-29. http://d.old.wanfangdata.com.cn/Periodical/cgqjs201806008
  • Related Articles

    [1]XI Shaojie, ZHANG Zonghua, GAO Nan, MENG Zhaozong. Calibration method of 3D scanner tilt angle based on IMU[J]. Journal of Applied Optics, 2022, 43(2): 291-297. DOI: 10.5768/JAO202243.0203003
    [2]YAN Xuewen, LI Hua, HE Liang, QIAO Pei, LI Deyuan. Point spread function acquisition of light field camera in 3D dose verification system for radiotherapy[J]. Journal of Applied Optics, 2021, 42(1): 43-48. DOI: 10.5768/JAO202142.0101007
    [3]PEI Jiaxin, SUN Shaoyuan, WANG Yulan, LI Dawei, HUANG Rong. Nighttime environment perception of driverless vehicles based on improved YOLOv3 network[J]. Journal of Applied Optics, 2019, 40(3): 380-386. DOI: 10.5768/JAO201940.0301004
    [4]Bai Yang, Chen Yuhua, Zhang Zenan, Li Weilong, Wang Gang. Experimental study on nonlinear scattering of graphene using tunable mid-infrared laser in 3 μm~5 μm wave band[J]. Journal of Applied Optics, 2016, 37(4): 618-622. DOI: 10.5768/JAO201637.0406001
    [5]Hong Han-yu, Luo Xiao, Song Jie, Shi Yu. Efficient generation for 3D printing model based on image self-calibration[J]. Journal of Applied Optics, 2016, 37(1): 69-73. DOI: 10.5768/JAO201637.0102003
    [6]LiuShao-bo, WANG Yin-he, LEI Peng, YAO Chun-long, GAO Peng, YIN Xiao-jun. Surface inspection and evaluation of ellipsoidal mirror using 3D scanning[J]. Journal of Applied Optics, 2013, 34(1): 117-122.
    [7]MA Dong-mei, MA Cai-wen, BAI Yu-long. Modified listless 3DSPITH with ROI for hyperspectral image compression[J]. Journal of Applied Optics, 2011, 32(3): 446-451.
    [8]MA Ming-zhe, LI Qiang, LIAO Sheng. Ray tracing of mechanically ruled gratings[J]. Journal of Applied Optics, 2010, 31(2): 233-236.
    [9]LIU Jun-han, LIU Wei-guo. Ultrathin LiTaO3 wafer prepared by wafer bonding and mechanical thinning processes[J]. Journal of Applied Optics, 2007, 28(6): 769-772.
    [10]XU Jiang-tao, YIN Tao. Effect of ion feedback blocking Al2O3 film on the performance of third generation night-vision imaging device[J]. Journal of Applied Optics, 2007, 28(2): 129-132.
  • Cited by

    Periodical cited type(5)

    1. 纪海莹,王天枢,熊浩,马万卓,袁泉,孙梦茹,林鹏. 位于第三近红外窗口的平坦光纤超连续谱产生. 应用光学. 2021(03): 565-570 . 本站查看
    2. 于闳飞,孟文文,杨国庆,徐新瑞,王建隆,孟祥翔,程坤,宋光磊. The cost functions for evaluation of laser dazzling degree. Optoelectronics Letters. 2020(03): 220-224 .
    3. 周琳,李中林. VCSEL激光器特性仿真的数学建模. 激光杂志. 2019(03): 163-167 .
    4. 贺宣,周冰,刘贺雄,刘晓帅. 激光压制干扰评估研究现状. 激光与红外. 2019(07): 787-793 .
    5. 都元松,董文锋,黎波涛,罗威. 对无人机光电系统机载干扰模式仿真分析. 火力与指挥控制. 2019(09): 162-168 .

    Other cited types(3)

Catalog

    Article views (946) PDF downloads (54) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return