ZHANG Qiang, GAO Jun, FAN Zhiguo, WANG Zhenwu, YAN Yu. Fog image reconstruction using target and atmospheric polarization information[J]. Journal of Applied Optics, 2019, 40(5): 829-837. DOI: 10.5768/JAO201940.0502007
Citation: ZHANG Qiang, GAO Jun, FAN Zhiguo, WANG Zhenwu, YAN Yu. Fog image reconstruction using target and atmospheric polarization information[J]. Journal of Applied Optics, 2019, 40(5): 829-837. DOI: 10.5768/JAO201940.0502007

Fog image reconstruction using target and atmospheric polarization information

More Information
  • Received Date: January 28, 2019
  • Revised Date: March 26, 2019
  • Combining the difference between target polarization information and atmospheric polarization information, an image reconstruction method based on the polarization information of target and atmosphere was proposed. Int this method, firstly, the atmospheric light image and target light image are separated from the light intensity image, the atmospheric light polarization information and target light polarization information are analyzed respectively, and the polarization defogging model is constructed. Secondly, the Gaussian filtering method fused with image gradient information is used to estimate the atmospheric light intensity and target light intensity, the atmospheric light polarization degree and target light polarization degree are calculated respectively.Then, the threshold segmentation method of 3σ rule is used to estimate the atmospheric light intensity at the infinite distance in the atmospheric light image space and finally the target image can be reconstructed. Field experiments were carried out under different weather conditions.The experimental results show that the method proposed can recover the target information well in fog, rain and snow weathers, and the entropy of reconstructed image increases by about 40%, the standard deviation of gray level increases by about 90% and the average gradient and edge strength increase by 3 times.
  • [1]
    NARASIMHAN S G, NAYAR S K. Contrast restoration of weather degraded images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724. doi: 10.1109/TPAMI.2003.1201821
    [2]
    NARASIMHAN S G, NAYAR K. Vision and the atmosphere[J]. International Journal of Computer Vision, 2002, 48(3): 233-254. doi: 10.1023/A:1016328200723
    [3]
    NARASIMHAN S G, NAYAR K. Vision in bad weather[J]. International Journal of Computer Vision, 2002, 48(3): 233-254. doi: 10.1023/A:1016328200723
    [4]
    高隽, 毕冉, 赵录建, 等.利用偏振信息的雾天图像全局最优重构[J].光学精密工程, 2017, 25(8): 2212-2220. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201708029

    GAO J, BI R, ZHAO L J, et al. Global optimized hazed image reconstruction based on polarization information[J]. Optics and Precision Engineering, 2017, 25(8): 2212-2220. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201708029
    [5]
    TAN R. Visibility in bad weather from a single image[C]//Proceedings of IEEE conference on computer vision and pattern recognition, USA : IEEE, 2008: 1-8.
    [6]
    HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. doi: 10.1109/TPAMI.2010.168
    [7]
    SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Instant dehazing of images using polarization[J]. IEEE, 2001, 1: I-325-I-332. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026610010
    [8]
    SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Polarization-based vision through haze[J]. Applied Optics, 2003, 42(3): 511-525. doi: 10.1364/AO.42.000511
    [9]
    NAMER E, SCHECHNER Y Y. Advanced visibility improvement based on polarization filtered images[J]. SPIE, 2005, 5888:588805-1-10. http://cn.bing.com/academic/profile?id=94b2f86d91b2d4171a93a5e6f132a68c&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    NAYAR S K, NARASIMHAN S G. Vision in bad weather[C]. IEEE conference on computer vision, USA: IEEE, 1999, 2: 820-827.
    [11]
    赵录建, 高隽, 毕冉, 等.基于最大和最小光强图像的偏振去雾方法[J].应用光学, 2017, 38(3): 415-420. http://www.yygx.net/CN/abstract/abstract10952.shtml

    ZHAO Lujian, GAO Jun, BI Ran, et al. Polarization defogging method based on maximum and minimum intensity images[J]. Journal of Applied Optics, 2017, 38(3): 415-420. http://www.yygx.net/CN/abstract/abstract10952.shtml
    [12]
    代晴晴, 范之国, 宋强, 等.全局参数自动估计的彩色图像偏振去雾方法[J].应用光学, 2018, 39(4): 511-517. http://www.yygx.net/CN/abstract/abstract11141.shtml

    DAI Qingqing, FAN Zhiguo, SONG Qiang, et al. Polarization defogging method for color image based on automatic estimation of global parameters[J]. Journal of Applied Optics, 2018, 39(4): 511-517. http://www.yygx.net/CN/abstract/abstract11141.shtml
    [13]
    TAREL J P, HAUTIERE N. Fast visibility restoration from a single color or gray level image[J]. IEEE Conference on Computer Vision, 2009, 30(2): 2201-2208. http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201305012
    [14]
    怀宇, 范之国, 孙洁, 等.三通棱镜同时偏振测量系统的标定[J].光电工程, 2015, 42(11): 18-24. doi: 10.3969/j.issn.1003-501X.2015.11.004

    HUAI Yu, FAN Zhiguo, SUN Jie, et al. Calibration of the three links prism simultaneous polarization measurement system[J]. Opto-Electronic Engineering, 2015, 42(11): 18-24. doi: 10.3969/j.issn.1003-501X.2015.11.004
    [15]
    孙洁, 高隽, 怀宇, 等.全天域大气偏振模式的实时测量系统[J].光电工程, 2016, 43(9): 45-50, 55. doi: 10.3969/j.issn.1003-501X.2016.09.008

    SUN Jie, GAO Jun, HUAI Yu, et al. Real-time measurement system for the pattern of all skylight polarization[J]. Opto-Electronic Engineering, 2016, 43(9): 45-50, 55. doi: 10.3969/j.issn.1003-501X.2016.09.008
    [16]
    WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi: 10.1109/TIP.2003.819861
    [17]
    刘成, 高隽, 范之国, 等.大气能见度对光偏振特性的影响[J].传感器与微系统, 2018, 37(6): 26-29. http://d.old.wanfangdata.com.cn/Periodical/cgqjs201806008

    LIU Cheng, GAO Jun, FAN Zhiguo, et al. Influence of atmospheric visibility on polarization property of light[J]. Transducer and Microsystem Technologies, 2018, 37(6): 26-29. http://d.old.wanfangdata.com.cn/Periodical/cgqjs201806008
  • Cited by

    Periodical cited type(3)

    1. 邵甲第,王邦新,谢晨波,李路,庄鹏,方志远,付松琳,曹也,杨婧,吴德成. 星载激光雷达中固态标准具的结构设计及性能检测. 量子电子学报. 2020(02): 235-241 .
    2. 田伟杰,王晓峰,罗杰. 基于微机电系统激光雷达测量技术的航天器隐藏目标点测量方法. 计算机测量与控制. 2020(03): 1-4+18 .
    3. 杨明冬,傅焰峰,赵建宜,全本庆,关卫林,张玓. 外腔可调谐激光器热调谐标准具的热分析优化. 光通信研究. 2019(03): 37-41 .

    Other cited types(3)

Catalog

    Article views (946) PDF downloads (54) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return