MA Jun, WANG Chenglong, XIA Yangjun. Modeling and simulation of linear Fresnel reflector system based on SolTrace[J]. Journal of Applied Optics, 2019, 40(4): 676-680. DOI: 10.5768/JAO201940.0405003
Citation: MA Jun, WANG Chenglong, XIA Yangjun. Modeling and simulation of linear Fresnel reflector system based on SolTrace[J]. Journal of Applied Optics, 2019, 40(4): 676-680. DOI: 10.5768/JAO201940.0405003

Modeling and simulation of linear Fresnel reflector system based on SolTrace

More Information
  • Received Date: December 27, 2018
  • Revised Date: March 11, 2019
  • Calculation formulas of parameters which are needed for establishing a linear Fresnel concentrator model in SolTrace software were derived by geometrical optical principles, and a modeling method was given by the example. The results show that for the linear Fresnel reflector which is composed of reflectors with 21 rows, 0.38 m width, 4 m length, the compound parabolic concentrator (CPC) with 45° maximum acceptance angle and the vacuum tube with 5.3 m height, the energy flux density on the vacuum collector tube gradually increases and the uniformity becomes better with the increasing of the solar incident angle. When the solar incident angle is greater than 40°, the energy flux density and the uniformity tend to be stable. What's more, the energy flux density on the vacuum collector tube is bigger and the uniformity is better for the CPC with involutes + cusp reflectors than the CPC with involutes + parabolas. The results have a directive function for the popularization and application of the linear Fresnel concentrator.
  • [1]
    罗春华, 张贺, 李艳红.像面照度均匀的环带式菲涅尔透镜设计[J].应用光学, 2018, 39(1): 7-11. http://www.yygx.net/CN/abstract/abstract11055.shtml

    LUO Chunhua, ZHANG He, LI Yanhong. Design of belt-type Fresnel lens with image surface of uniform illuminance[J]. Journal of Applied Optics, 2018, 39(1): 7-11. http://www.yygx.net/CN/abstract/abstract11055.shtml
    [2]
    MILLS D. Advances in solar thermal electricity technology[J]. Solar Energy, 2004, 76(1/2/3): 19-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2724bb750cfa5c12f94c90bdb858d72d
    [3]
    DUFFIE J A, BECKMAN W A. Solar Engineering of Thermal Processes[M]. USA: John Wiley & Sons, Inc., 2013.
    [4]
    KALOGIROU S A. Solar thermal collectors and applications[J]. Progress in energy and combustion science, 2004, 30(3): 231-295. doi: 10.1016/j.pecs.2004.02.001
    [5]
    CAVALLARO F. Multi-criteria decision aid to assess concentrated solar thermal technologies[J]. Renewable Energy, 2009, 34(7): 1678-1685. doi: 10.1016/j.renene.2008.12.034
    [6]
    王成龙, 马军, 范多旺.线性菲涅尔式聚光系统单管接收器的设计与优化[J].中国科学(技术科学), 2014, 44(6): 597-602. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201406007

    WANG Chenglong, MA Jun, FAN Duowang. Design and analysis of a CPC with single vacuum tube for linear Fresnel reflector system[J]. Scientia Sinica(Technologica), 2014, 44(6): 597-602. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201406007
    [7]
    GHARBI N E, DERBAL H, BOUAICHAOUI S, et al. A comparative study between parabolic trough collector and linear Fresnel reflector technologies[J]. Energy Procedia, 2011, 6: 565-572. doi: 10.1016/j.egypro.2011.05.065
    [8]
    QIU Y, HE Y L, CHENG Z D, et al. Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods[J]. Applied Energy, 2015, 146: 162-173. doi: 10.1016/j.apenergy.2015.01.135
    [9]
    SHARMA V, KHANNA S, NAYAK J K, et al. Effects of shading and blocking in compact linear fresnel reflector field[J]. Energy, 2016, 94: 633-653. doi: 10.1016/j.energy.2015.10.098
    [10]
    杜春旭, 王普, 吴玉庭, 等.线性菲涅耳不同镜场光学性能比较[J].太阳能学报, 2013, 34(8): 1353-1359. doi: 10.3969/j.issn.0254-0096.2013.08.009

    DU Chunxu, WANG Pu, WU Yuting, et al. Compares of optical performance of different aligned linear fresnel mirror field[J]. Acta Energiae Solaris Sinica, 2013, 34(8): 1353-1359. doi: 10.3969/j.issn.0254-0096.2013.08.009
    [11]
    赵金龙, 李林, 崔正军, 等.线性菲涅耳反射聚光器聚焦光斑能流密度分布的计算[J].光学学报, 2012, 32(12):97-103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201212017

    ZHAO Jinlong, LI Lin, CUI Zhengjun, et al. Calculation of flux density distribution on focal plane in linear fresnel reflector[J]. Acta Optica Sinica, 2012, 32(12): 97-103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201212017
    [12]
    王成龙, 马军, 范多旺.线性菲涅尔式聚光系统的镜场布置与优化[J].光学精密工程, 2015, 23(1):78-82. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201501011

    WANG Chenglong, MA Jun, FAN Duowang, et al. Arrangement and optimization of mirror field for linear Fresnel reflector system[J]. Optics and Precision Engineering, 2015, 23(1): 78-82. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201501011
    [13]
    余雷, 王军, 张耀明, 等.关于管状CPC缝隙的相关问题的分析[J].太阳能学报, 2011, 32(2): 246-251. http://d.old.wanfangdata.com.cn/Periodical/tynxb201102020

    YU Lei, WANG Jun, ZHANG Yaoming, et al. Analysis of the gaps of compound parabolic concentrators with tubular absorbers[J]. Acta Energiae Solaris Sinica, 2011, 32(2): 246-251. http://d.old.wanfangdata.com.cn/Periodical/tynxb201102020
    [14]
    ORTABASI U, BUEHL W M. An internal cusp reflector for an evacuated tubular heat pipe solar thermal collector[J]. Solar Energy, 1980, 25(1):67-78. doi: 10.1016-0038-092X(80)90407-7/
  • Related Articles

    [1]LI Zheng, XU Haoyu, LIANG Jingyuan, ZHANG Ying, KE Xizheng. Principle and research progress of four-quadrant detector spot detection[J]. Journal of Applied Optics, 2023, 44(5): 927-942. DOI: 10.5768/JAO202344.0509001
    [2]WANG Fubin, SUN Zhilin, WANG Shangzheng. Correlation analysis of gray scale and geometric features of femtosecond laser spot[J]. Journal of Applied Optics, 2020, 41(5): 1108-1116. DOI: 10.5768/JAO202041.0507002
    [3]CHEN Wenjian, SUN Weiping, DING Tianbao, LEI Junjie, DUAN Yuanyuan, LI Gang, HAN Yaofeng. Design of missile target angle measurement path based on laser spot time-sharing method[J]. Journal of Applied Optics, 2019, 40(6): 1004-1007. DOI: 10.5768/JAO201940.0601012
    [4]LIU Bohan, LAI Min, XIAO Shaorong. Method for detecting far-field spot uniformity of optical fiber output[J]. Journal of Applied Optics, 2019, 40(2): 356-362. DOI: 10.5768/JAO201940.0208003
    [5]Lu Hongqiang, Zhang Jingyue, Zhang Baoquan. Analysis of detection capability of shortwave infrared imaging system on laser spot[J]. Journal of Applied Optics, 2018, 39(4): 574-578. DOI: 10.5768/JAO201839.0406001
    [6]Xiao Xingwei, Ma Guolu, Zeng Guoying. Centering method for non-diffracting spot images based on correlation-coefficient[J]. Journal of Applied Optics, 2018, 39(4): 500-504. DOI: 10.5768/JAO201839.0402003
    [7]MU Rang-xiu, NING Zi-li, BI Bo-rui, HOU Feng-qian, XUE Chang-jia. Implementation of pulse peak holding circuit based on laser spot tracker[J]. Journal of Applied Optics, 2013, 34(6): 1047-1050.
    [8]CHEN Zhi-bin, LIU Yu-xiang, XUE Ming-xi, HOU Zhang-ya, LIU Bao-hua. Laser spot acquisition by lattice up-conversion board[J]. Journal of Applied Optics, 2011, 32(6): 1139-1144.
    [9]TANG Shu-gang, DANG Li-ping, BAI Bo. Morphological filter algorithm to improve positioning accuracy of multi-laser convergent spot center[J]. Journal of Applied Optics, 2008, 29(5): 693-696.
    [10]WANG Chun-yang, Li Jin-shi. Detection of laser spot drift[J]. Journal of Applied Optics, 2007, 28(2): 205-208.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views (1380) PDF downloads (104) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return