TU Zhijian, ZHANG Tianxu, SANG Hongshi. Indirect location method for building target based on automatic selection of auxiliary target[J]. Journal of Applied Optics, 2019, 40(4): 603-611. DOI: 10.5768/JAO201940.0402004
Citation: TU Zhijian, ZHANG Tianxu, SANG Hongshi. Indirect location method for building target based on automatic selection of auxiliary target[J]. Journal of Applied Optics, 2019, 40(4): 603-611. DOI: 10.5768/JAO201940.0402004

Indirect location method for building target based on automatic selection of auxiliary target

More Information
  • Received Date: January 15, 2019
  • Revised Date: February 25, 2019
  • Aiming at the false alarm or missing problems due to the insignificant and obscured targets in sequence images, an indirect localization method for building targets based on automatic selection of auxiliary targets was proposed to improve the stability of target tracking. In this method, firstly, the region with stable shape and significant gray level in the infrared image was automatically selected as the auxiliary target. After locating the building target, its relative positional relationship with the target was extracted, and then, the relative position was used to indirectly locate the target. Finally, the target was located by fusing the result of direct target recognition and the result of indirect target location, which could update the auxiliary target timely to ensure that it is always in the field of view. The experimental result shows that the false alarm or missing problems can be solved by indirect location, and it can improve the accuracy and robustness of the algorithm during the process of target location.
  • [1]
    YANG X Y, ZHANG T X, LU Y. Building recognition based on geometric model in FLIR image sequences[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 30(5): 468-483. doi: 10.1007/s10762-009-9470-1
    [2]
    颜廷法.基于图像序列的特定建筑物识别算法[J].泰山学院学报, 2018, 40(3): 62-66. doi: 10.3969/j.issn.1672-2590.2018.03.009

    YAN Ting fa. An algorithm of special building recognition base on image sequence[J]. Journal of Taishan University, 2018, 40(3): 62-66. doi: 10.3969/j.issn.1672-2590.2018.03.009
    [3]
    苏娟, 徐青松, 刘刚.一种基于边缘匹配的前视红外目标识别算法[J].兵工学报, 2012, 33(3): 271-277. http://d.old.wanfangdata.com.cn/Periodical/bgxb201203004

    SU Juan, XU Qingsong, LIU Gang. A forward looking infrared target recognition algorithm based on edge matching[J]. Acta Armamentarii, 2012, 33(3): 271-277. http://d.old.wanfangdata.com.cn/Periodical/bgxb201203004
    [4]
    明德烈, 田金文.红外前视对一类特殊建筑目标识别技术研究[J].宇航学报, 2010, 31(4): 1190-1194. doi: 10.3873/j.issn.1000-1328.2010.04.040

    MING Delie, TIAN Jinwen. Automatic infrared condensing tower target recognition using gradient vector features[J]. Journal of Astronautics, 2010, 31(4): 1190-1194. doi: 10.3873/j.issn.1000-1328.2010.04.040
    [5]
    高晶, 孙继银, 吴昆, 等.基于形状模板匹配的前视红外目标检测方法[J].北京工业大学学报, 2012, 38(9):1359-1365. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjgydxxb201209016

    GAO Jing, SUN Jiyin, WU Ken, et al. FLIR target detection algorithm based on shape template matching[J]. Journal of Beijing University of Technology, 2012, 38(9): 1359-1365. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjgydxxb201209016
    [6]
    WANG D W, ZHANG T X. Building recognition based on indirect location of planar landmark in FLIR image sequences[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2011, 25(3): 431-448. doi: 10.1142/S0218001411008695
    [7]
    孙大为, 王仕成, 杨东方, 等.基于仿射不变性映射的不显著目标间接定位[J].中国惯性技术学报, 2017, 25(6):782-788. http://d.old.wanfangdata.com.cn/Periodical/zggxjsxb201706015

    SUN Dawei, WANG Shicheng, YANG Dongfang, et al. Indirect location algorithm for insignificant targets based on affine invariability mapping[J]. Journal of Chinese Inertial Technology, 2017, 25(6):782-788. http://d.old.wanfangdata.com.cn/Periodical/zggxjsxb201706015
    [8]
    李超, 吴玉敬, 徐飞飞, 等.一种目标遮挡情况下的自动跟踪控制方法[J].应用光学, 2017, 38(5):713-718. http://www.yygx.net/CN/abstract/abstract11003.shtml

    LI Chao, WU Yujing, XU Feifei, et al. Auto-tracking control method against target occlusion[J]. Journal of Applied Optics, 2017, 38(5):713-718. http://www.yygx.net/CN/abstract/abstract11003.shtml
    [9]
    杨亚男.视频目标跟踪的抗遮挡算法研究[D].开封: 河南大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10475-1018226859.htm

    YANG Yanan. Research on anti-occlusion algorithm for video target tracking[D]. Kaifeng: Henan University, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10475-1018226859.htm
    [10]
    刘万军, 张壮, 姜文涛, 等.遮挡判别下的多尺度相关滤波跟踪算法[J].中国图像图形学报, 2018, 23(12):1789-1800. http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a201812002

    LIU Wanjun, ZHANG Zhuang, JIANG Wentao, et al. Multi-scale correlation filter tracking algorithm based on occlusion discrimination[J]. Journal of Image and Graphics, 2018, 23(12):1789-1800. http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a201812002
    [11]
    PETERSEN W, ISETH O, NORD T S, et al. Estimation of the full-field dynamic response of a floating bridge using Kalman-type filtering algorithms[J]. Mechanical Systems & Signal Processing, 2018, 107:12-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=39a47cba9e49b1081d940216af01f313
    [12]
    ZHU Suguo, DU Junping, REN Nan. A novel simple visual tracking algorithm based on hashing and deep learning[J]. Chinese Journal of Electronics, 2017, 26(5):1073-1078. doi: 10.1049/cje.2016.06.026
    [13]
    WEI W, LIU X H, ZHOU B B, et al. Sea surface target detection and recognition algorithm based on local and global salient region detection[C]. San Diego: Applications of Digital Image Processing, 2016: 99712U(1-8).
    [14]
    ZHANG L, LI J H, LU H C. Saliency detection via extreme learning machine[J]. Neurocomputing, 2016, 218: 103-112. doi: 10.1016/j.neucom.2016.08.066
    [15]
    RAMADAN H, TAIRI H. Robust segmentation of moving objects in video based on spatiotemporal visual saliency and active contour model[J]. Journal of Electronic Imaging, 2016, 25(6): 061612-1-10. doi: 10.1117/1.JEI.25.6.061612
  • Related Articles

    [1]LU Xiaoyan, SHEN Meng, WANG Jie, LI Jiaheng, YANG Yizhou, HE Xi, CAO Yuju, PANG Lan. Long-time tracking technology for ground targets based on deep learning[J]. Journal of Applied Optics, 2025, 46(2): 343-354. DOI: 10.5768/JAO202546.0202007
    [2]LI Yingjuan, XU Kailuan, LIU Peizhen, SONG Jinhong, CAO Yuju, ZHANG Xuhui. Tracking of infrared sea-skimming small target with sea-sky line[J]. Journal of Applied Optics, 2024, 45(1): 70-78. DOI: 10.5768/JAO202445.0102001
    [3]CAI Wei, XU Peiwei, YANG Zhiyong, JIANG Xinhao, JIANG Bo. Dim-small targets detection of infrared images in complex backgrounds[J]. Journal of Applied Optics, 2021, 42(4): 643-650. DOI: 10.5768/JAO202142.0402002
    [4]FAN Pengcheng, ZHANG Weiguo, LIU Wangang, ZHANG Wei, HUANG Weidong, LIU Guodong, XU Xiaofeng. Infrared weak small target detection algorithm based on embedded GPU[J]. Journal of Applied Optics, 2020, 41(5): 1089-1095. DOI: 10.5768/JAO202041.0506004
    [5]LI Xiaoning, LEI Tao, ZHONG Jiandan, TANG Zili, JIANG Ping. Detecting method of small vehicle targets based on improved SSD[J]. Journal of Applied Optics, 2020, 41(1): 150-155. DOI: 10.5768/JAO202041.0103004
    [6]Zhou Yuan, Zhang Jianming, Lin Xiao. Infrared small target detection using weighting LoG operator[J]. Journal of Applied Optics, 2017, 38(1): 114-119. DOI: 10.5768/JAO201738.0106003
    [7]CHEN Dong, LIN Jian-lin, MA De-bao. Small electro-optical target detection based on two-scale wavelet analysis[J]. Journal of Applied Optics, 2011, 32(3): 492-497.
    [8]HE Peng-fei, SU Xin-yan, WANG jian. Small target detection based on image sequences[J]. Journal of Applied Optics, 2011, 32(2): 272-275.
    [9]ZHANG Heng, LI You, LI Li-chun, LEI Zhi-hui. Scale-adaptive real-time detection for small targets[J]. Journal of Applied Optics, 2008, 29(1): 9-13.
    [10]CHEN Dong-yan, ZHANG Qi, WANG Yan-ling, LUO Shi-tu. Implementation of maneuver target prediction in image tracking system[J]. Journal of Applied Optics, 2007, 28(1): 33-37.
  • Cited by

    Periodical cited type(15)

    1. 王婧骅,崔璨,张云飞,段玉玮,赵婉茹. 基于循环神经网络的异常用电数据检测方法. 电子设计工程. 2024(01): 120-123+128 .
    2. 彭雪玲,林珊玲,林志贤,郭太良. 改进的YOLOv5s太阳能电池片缺陷检测算法. 液晶与显示. 2024(02): 237-247 .
    3. 刘玉淇,吴一全. 基于机器视觉的太阳能电池片缺陷检测算法综述. 光学精密工程. 2024(06): 868-900 .
    4. 何翔,杨爱军,黎健生,陈彩云,游宏亮. 基于cycleGAN的太阳电池电致发光图像数据增强方法. 液晶与显示. 2024(08): 1057-1069 .
    5. 林维修,李峰,王海峰,许育燕,金科扬. 基于图像处理的光伏组件热斑缺陷检测方法. 计算技术与自动化. 2024(03): 121-126 .
    6. 李莉杰,高方,李元涛,田壮梅,吕莉源,张梦洁. 储能设备电池极片缺陷检测网络研究. 电力大数据. 2024(06): 22-31 .
    7. 张引贤,张展耀,张希雅. 基于边缘神经网络的海岛光伏表面异常检测. 浙江电力. 2024(12): 95-103 .
    8. 葛钊明,胡跃明. 基于改进YOLOv5的锂电池极片缺陷检测. 激光杂志. 2023(02): 25-29 .
    9. 何翔. 基于DCGANs的半片光伏组件电致发光图像增强技术. 应用光学. 2023(02): 314-322 . 本站查看
    10. 刘耀迪,肖钰蕙,杨超. 智能化光伏缺陷检测系统. 光源与照明. 2023(06): 136-138 .
    11. 王云冰,付晓刚,牛源. 基于无人机光伏巡检的路线优化与故障检测. 上海电机学院学报. 2023(05): 275-280 .
    12. 艾上美,周剑峰,张必朝,张涛,王红斌. 基于改进SSD算法的光伏组件缺陷检测研究. 智慧电力. 2023(12): 53-58 .
    13. 刘敏,陈凌宇,钱洲亥,李治国. 光伏电池片弱边缘缺陷空耦超声特征检测. 制造业自动化. 2022(04): 191-195 .
    14. 符长虹,陈锟辉,鲁昆瀚,郑光泽,赵吉林. 面向边缘智能光学感知的航空紧固件旋转检测. 应用光学. 2022(03): 472-480 . 本站查看
    15. 凌旭峰,周丽婕,祝毓,杨红卫,杨杰. 基于生成式自监督学习的太阳能电池板缺陷检测. 机械制造. 2022(07): 12-18 .

    Other cited types(8)

Catalog

    Article views (1072) PDF downloads (42) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return