Li Xue, Fang Bo, Deng Yuqiang, Li Jianmin, Qi Cenke, Cai Jinhui. High-precision responsivity calibration system for terahertz detector[J]. Journal of Applied Optics, 2018, 39(5): 691-696. DOI: 10.5768/JAO201839.0503003
Citation: Li Xue, Fang Bo, Deng Yuqiang, Li Jianmin, Qi Cenke, Cai Jinhui. High-precision responsivity calibration system for terahertz detector[J]. Journal of Applied Optics, 2018, 39(5): 691-696. DOI: 10.5768/JAO201839.0503003

High-precision responsivity calibration system for terahertz detector

More Information
  • Received Date: April 24, 2018
  • Revised Date: June 13, 2018
  • In order to calibrate the terahertz detector to ensure its accuracy and reliability of measurement, the calibration technology for responsivity of terahertz detector was studied. For commonly used blackbody radiation test technology for terahertz detector, there have been several problems such as high requirements on the environment, equipment and the difficulties in establishment. Taking the thermoelectric terahertz detector developed by the National Institute of Metrology as a standard detector, a calibration scheme was proposed and a responsivity calibration system for terahertz detector was designed and established. To improve the calibration accuracy, the beam quality of the calibration optical system was experimentally tested and the diaphragm aperture was set reasonably to meet the calibration requirements. At 0.1 THz, the responsivity of two field-effect self-mixing terahertz detectors were calibrated. The results show that the relatively extended uncertainty is 6.80% (k=2), verifying the feasibility of the calibration system. In the system, the power responsibility of terahertz detector can be traceable to the National Terahertz Power Standard and ensure the accuracy and reliability of terahertz power measurement.
  • [1]
    SIEGEL P H. Terahertz technology[J]. IEEE Transaction on microwave theory and technology, 2002, 50(3): 910-928. doi: 10.1109/22.989974
    [2]
    杨鸿儒, 李宏光.太赫兹波通信技术研究进展[J].应用光学, 2018, 39(1): 12-13. http://d.old.wanfangdata.com.cn/Periodical/yygx201801003

    YANG Hongru, LI Hongguang. Research progress on terahertz communication technology[J]. Journal of Applied Optics, 2018, 39(1): 12-13. http://d.old.wanfangdata.com.cn/Periodical/yygx201801003
    [3]
    FEDERICI J F, SCHULKIN B, HUANG F, et al. THz imaging and sensing for security applications explosives, weapons and drugs[J]. Seed Science and Technology, 2005, 20(10): 266-280. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=00b050fe85254fb493830060e90e3744
    [4]
    王兰, 张长军, 刘宏华, 等.太赫兹功率计量技术研究[J].微波学报, 2014, 30(S1): 566-567. http://d.old.wanfangdata.com.cn/Conference/8496476

    WANG Lan, ZHANG Changjun, LIU Honghua, et al. The study of the technique of power measure of the THz wave[J]. Journal of Microwaves, 2014, 30(S1): 566-567. http://d.old.wanfangdata.com.cn/Conference/8496476
    [5]
    KLEINE-OSTMANN T. THz metrology[C]//2013 38th International Conference on Infrared, Millimeter and Terahertz Waves. USA: IEEE, 2013: 1-4.
    [6]
    WERNER L, HVBERS H W, MEINDL P, et al. Towards traceable radiometry in the terahertz region[J]. Metrologia, 2008, 46(2009):160-164. http://cn.bing.com/academic/profile?id=1ad0e859d8e68f29c39ee9348c122abd&encoded=0&v=paper_preview&mkt=zh-cn
    [7]
    LEHMAN J H, LEE B, GROSSMAN E N. Far infrared thermal detectors for laser radiometry using a carbon nanotube array[J]. Applied Optics, 2011, 50(21):4099. doi: 10.1364/AO.50.004099
    [8]
    DENG Yuqiang, SUN Qing, YU Jing, et al. Broadband high-absorbance coating for terahertz radiometry[J]. Optics Express, 2013, 21(5): 5740-5742. http://cn.bing.com/academic/profile?id=12527d20152d900fc8cbdfa375ca616c&encoded=0&v=paper_preview&mkt=zh-cn
    [9]
    IIDA H, KINOSHITA M, AMEMIYA K, et al. Calorimetric measurement of absolute terahertz power at the sub-microwatt level[J]. Optics Letters, 2014, 39(6):1609. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f162d09e8c32e6341bf2410db3413b9b
    [10]
    邓玉强, 孙青, 于靖, 等.太赫兹辐射功率计量研究进展与国际比对[J].中国激光, 2017, 44(03): 276-284. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201703037

    DENG Yuqiang, SUN Qing, YU Jing, et al. Progress of terahertz radiometry and international comparison[J]. Chinese Journal of Laser, 2017, 44(03): 276-284. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201703037
    [11]
    杨建忠.太赫兹探测器测试系统的设计[D].成都: 电子科技大学, 2017.

    YANG Jianzhong. Design of terahertz detector test system[D]. Chengdu: University of Electronic Science and Technology of China, 2017.
    [12]
    李宏光, 杨鸿儒, 薛战理, 等.太赫兹探测器参数测量装置及测量方法: 中国, CN104729691A[P]. 2015-06-24.

    LI Hongguang, YANG Hongru, XUE Zhanli, et al. Terahertz detector parameter measuring device and measuring method: China, CN104729691A[P]. 2015-06-24.
    [13]
    JJF 1600-2016, 辐射型太赫兹功率计校准规范[S].北京: 中国质检出版社, 2016.

    JJF 1600-2016, Calibration Specification for Terahertz Radiation Power Meters[S].Beijing: China Zhijian Publishing House, 2016.
    [14]
    王锐, 宋克非.高精度紫外探测器辐射定标系统[J].光学精密工程, 2009, 17(03): 469-474. doi: 10.3321/j.issn:1004-924X.2009.03.001

    WANG Rui, SONG Kefei. High-accuracy radiance calibration system for ultraviolet detector[J]. Optics and Precision Engineering, 2009, 17(03): 469-474. doi: 10.3321/j.issn:1004-924X.2009.03.001
    [15]
    JJF 1059.1-2012, 测量不确定度评定与表示[S].北京: 中国质检出版社, 2012.

    JJF 1059.1-2012, Evaluation and Expression of Uncertainty in Measurement[S].Beijing: China Zhujian Publishing House, 2012.
  • Related Articles

    [1]LI Yan, FAN Jihong, YU Bing, YUAN Lin'guang, SUN Yu'nan, QIN Yan, MA Li. Spectral responsivity measurement technology for UV detector based on cryogenic radiometer[J]. Journal of Applied Optics, 2022, 43(2): 311-316. DOI: 10.5768/JAO202243.0204001
    [2]LIN Yongjie, XU Nan, HE Yingwei, LIU Wende, GAN Haiyong, GONG Huaping. Relative spectral responsivity calibration technology of InGaAs photodetector based on super-continuum light source[J]. Journal of Applied Optics, 2021, 42(4): 709-716. DOI: 10.5768/JAO202142.0403003
    [3]DENG Yuqiang. Progress of terahertz metrology research and standard construction[J]. Journal of Applied Optics, 2020, 41(4): 651-661. DOI: 10.5768/JAO202041.0409002
    [4]LI Yongliang, YU Jianhui, ZHANG Jun. Detection of performances and noise of APD detector module[J]. Journal of Applied Optics, 2019, 40(6): 1115-1119. DOI: 10.5768/JAO201940.0603006
    [5]Ding Lei, Yuan Yinlin, Zheng Xiaobing, Zhang Yanna, Qi Tao, Wu Haoyu. Verification method of spectral calibration accuracy for hyperspectral remote sensors[J]. Journal of Applied Optics, 2017, 38(3): 463-468. DOI: 10.5768/JAO201738.0303006
    [6]XU Tao, YU Jing, DENG Yu-qiang, SUN Qing, ZHANG Yun-peng. Excimer laser power standard detector[J]. Journal of Applied Optics, 2012, 33(4): 793-798.
    [7]XU Li-jun, CAI Hong-xing, LI Chang-li, BI Juan, JI Guang-yong, ZHANG Xi-he. Responsivity of photoelectric detector irradiated by intense laser[J]. Journal of Applied Optics, 2010, 31(6): 1018-1022.
    [8]WANG Ji, ZHENG Xiao-bing, ZHANG Lei, LIN Zhi-qiang. Measurement of spectral responsivity of an infrared detector[J]. Journal of Applied Optics, 2007, 28(3): 313-316.
    [9]FAN Ji-hong, HOU Xi-qi, YANG Zhao-jin, YIN Tao, QIN Yan, LIU Jian-ping. Measurement technology for spectral responsivity of infrared detector[J]. Journal of Applied Optics, 2006, 27(5): 460-462.
    [10]FAN Ji-hong, YANG Zhao-jin, QIN Yan. Research of test technology for absolute spectral responsivity of HgCdTe detector[J]. Journal of Applied Optics, 2006, 27(supp): 79-82.
  • Cited by

    Periodical cited type(1)

    1. 杜国军,欧宗耀,张晨阳,王春辉,李旭,李重阳. 真空环境下激光测距仪收发光轴测试方法研究. 激光技术. 2021(05): 561-565 .

    Other cited types(0)

Catalog

    Article views (814) PDF downloads (90) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return