Li Daquan, Hong Huajie, Yuan Dongyang, Jiang Xianliang. Load analysis and structure checking of inertially stabilized platform based on cable differential transmission[J]. Journal of Applied Optics, 2018, 39(5): 619-626. DOI: 10.5768/JAO201839.0501005
Citation: Li Daquan, Hong Huajie, Yuan Dongyang, Jiang Xianliang. Load analysis and structure checking of inertially stabilized platform based on cable differential transmission[J]. Journal of Applied Optics, 2018, 39(5): 619-626. DOI: 10.5768/JAO201839.0501005

Load analysis and structure checking of inertially stabilized platform based on cable differential transmission

More Information
  • Received Date: January 21, 2018
  • Revised Date: June 15, 2018
  • Aiming at the structural design of a new type inertially stabilized platform based on cable differential transmission, the load analysis, frame structure strength and stability checking were studied. According to the load characteristics and working conditions of the platform, the load was divided into inertial load, centroid-offset acceleration load, friction load and environmental load, and then calculated respectively to conduct load synthesis and power estimation. The static and dynamic structural verification was carried out with the azimuth frame taken as an example. The finite element analysis based on the result of load analysis shows that the frame has good static and dynamic characteristics: the deformation during load transferring and frame overload with the carrier are within the allowable range of the system, which meets the design requirements; the first-order inherent frequency of frame structure is 156.04 Hz, much higher than the bandwidth of the servo system. Accordingly the resonance can be avoided and the frame shows high structural dynamic stability.
  • [1]
    张延顺, 朱如意, 房建成.航空遥感用惯性稳定平台动力学耦合分析[J].中国惯性技术学报, 2011, 19(5):505-509. http://d.old.wanfangdata.com.cn/Periodical/zggxjsxb201105001

    ZHANG Yanshun, ZHU Ruyi, FANG Jiancheng. Analysis on dynamics coupling of inertial stabilized platform for aerial remote sensing[J]. Journal of Chinese Inertial Technology, 2011, 19(5):505-509. http://d.old.wanfangdata.com.cn/Periodical/zggxjsxb201105001
    [2]
    李文魁, 王俊璞, 金志华, 等.直升机机载光电吊舱的发展现状及对策[J].中国惯性技术学报, 2004, 12(5):75-80. doi: 10.3969/j.issn.1005-6734.2004.05.018

    LI Wenkui, WANG Junpu, JIN Zhihua, et al. Development and countermeasure of airborne optoelectronic pods[J]. Journal of Chinese Inertial Technology, 2004, 12(5):75-80. doi: 10.3969/j.issn.1005-6734.2004.05.018
    [3]
    曹成铭, 邱亚峰.导弹红外热源测试挂架机构设计和研究[J].红外技术, 2015, 37(9):719-723. http://d.old.wanfangdata.com.cn/Periodical/hwjs201509002

    CAO Chengming, QIU Yafeng. Design and research of missile infrared heat source test hanging rack mechanism[J]. Infrared Technology, 2015, 37(9):719-723. http://d.old.wanfangdata.com.cn/Periodical/hwjs201509002
    [4]
    刘仲宇, 张涛, 刘家燕, 等.航空遥感惯性稳定平台内框架拓扑优化设计[J].中国惯性技术学报, 2015, 23(4):429-433. http://d.old.wanfangdata.com.cn/Periodical/zggxjsxb201504002

    LIU Zhongyu, ZHANG Tao, LIU Jiayan, et al. Topology optimization design for inner frame of aerial remote sensing inertially stabilized platform[J]. Journal of Chinese Inertial Technology, 2015, 23(4):429-433. http://d.old.wanfangdata.com.cn/Periodical/zggxjsxb201504002
    [5]
    徐钰蕾, 王昱棠, 张宇鹏.机载光电平台内框架结构预测[J].仪器仪表学报, 2014, 35(6):73-76. http://d.old.wanfangdata.com.cn/Periodical/yqyb2014z1014

    XU Yulei, WANG Yutang, ZHANG Yupeng. Structure prediction of inner-gimbal in airborne opto-electric platform[J]. Chinese Journal of Scientific Instrument, 2014, 35(6):73-76. http://d.old.wanfangdata.com.cn/Periodical/yqyb2014z1014
    [6]
    谭淞年, 李全超, 张洪伟, 等.某航空光电稳定平台方位框架设计与分析[J].应用光学, 2016, 37(3):327-331. http://www.cqvip.com/QK/95241X/201603/669244589.html

    TAN Songnian, LI Quanchao, ZHANG Hongwei, et al. Design and analysis of azimuth-gimble in a aerial opto-electronic stabilized platform[J]. Journal of Applied Optics, 2016, 37(3):327-331. http://www.cqvip.com/QK/95241X/201603/669244589.html
    [7]
    HILKERT J M, DAVID L A. Structures effects and techniques in precision pointing and tracking systems-atutorial overview[J]. SPIE, 2010, 76961C:1-12. http://cn.bing.com/academic/profile?id=f6721a2bd467a515564875fd1e32eaff&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    蒋玉川, 张建海, 李章政.弹性力学与有限单元法[M].北京:科学出版社, 2006.

    JIANG Yuchuan, ZHANG Jianhai, LI Zhangzheng. Elastic mechanics and finite element method[M]. Beijing: Science Press, 2006.
    [9]
    沈颖凡, 赵嫔娅, 陈祖金.航空吊舱稳定平台结构设计[J].航空兵器, 2010(3):61-64. doi: 10.3969/j.issn.1673-5048.2010.03.015

    SHEN Yingfan, ZHAO Binya, CHEN Zujin. Airborne pod stabilized platform structure design[J]. Aero Weaponry, 2010(3):61-64. doi: 10.3969/j.issn.1673-5048.2010.03.015
    [10]
    李大泉.基于差动绳传动的惯性稳定平台设计与分析[D].长沙: 国防科技大学, 2017.

    LI Daquan. Design and analysis of differential cable-driven inertially stabilized platform[D]. Changsha: National University of Defense Technology, 2017.
    [11]
    王昭.某天线稳定平台的结构设计[J].电子机械工程, 2012, 28(4):25-28. doi: 10.3969/j.issn.1008-5300.2012.04.007

    WANG Zhao. Structure design of an antenna stabilizing platform[J]. Electro-Mechanical Engineering, 2012, 28(4):25-28. doi: 10.3969/j.issn.1008-5300.2012.04.007
    [12]
    余亚群, 韩军, 王建明, 等.车载稳定平台伺服电机的选用[J].机电产品开发与创新, 2007, 20(6):65-67. doi: 10.3969/j.issn.1002-6673.2007.06.028

    YU Yaqun, HAN Jun, WANG Jianming, et al. Selection of servo motor for vehicle stabilized platform[J]. Development & Innovation of Machinery & Electrical Product, 2007, 20(6):65-67. doi: 10.3969/j.issn.1002-6673.2007.06.028
    [13]
    宋东生, 杨远成, 高雅, 等.某稳瞄砖塔结构的有限元模态分析与实验验证[J].应用光学, 2015, 36(4):497-503. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx201504001

    SONG Dongsheng, YANG Yuancheng, GAO Ya, et al. FEM modal analysis and test validation for sight-stabilization turret structure[J]. Journal of Applied Optics, 2015, 36(4):497-503. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx201504001
    [14]
    MASAKI O, TAKAYUKI Y, KAZUHIRO I, et al. Level set-based topology optimization for the design of light-trapping structure[J]. IEEE Transactions on Magnetics, 2014, 50(2):729-732. doi: 10.1109/TMAG.2013.2282046
    [15]
    郎跃东, 刘少鹏, 高强, 等.航空惯性稳定平台的框架刚度及模态分析[J].导航与控制, 2012, 11(2) :9-13. doi: 10.3969/j.issn.1674-5558.2012.02.002

    LANG Yuedong, LIU Shaopeng, GAO Qiang, et al. Stiffness and mode analysis of framework for an aerial inertial stabilized platform[J]. Navigation and Control, 2012, 11(2):9-13. doi: 10.3969/j.issn.1674-5558.2012.02.002
    [16]
    朱金彪, 熊永虎, 叶佩青.机载SAR天线稳定平台结构动态特性与动强度分析[J].机械设计与研究, 2007, 23(6):94-97. doi: 10.3969/j.issn.1006-2343.2007.06.024

    ZHU Jinbiao, XIONG Yonghu, YE Peiqing. The analysis on dynamic characteristics of the structures of antenna gyro-stabilized platform of an airborne SAR[J]. Machine Design and Research, 2007, 23(6):94-97. doi: 10.3969/j.issn.1006-2343.2007.06.024
  • Related Articles

    [1]SUN Yanan, CHEN Ping, PAN Jinxiao. Low-dose CT denoising using combination of multi-scale residuals and global attention[J]. Journal of Applied Optics, 2025, 46(2): 292-299. DOI: 10.5768/JAO202546.0202001
    [2]CHEN Qingjiang, YIN Lexuan, SHAO Luoyi. Image super-resolution reconstruction based on multi-scale two-stage network[J]. Journal of Applied Optics, 2023, 44(6): 1343-1354. DOI: 10.5768/JAO202344.0602004
    [3]HE Lin, MA Guolu, SONG Zijun, ZHAO Yong, ZENG Guoying, RAO Jian. Attitude combined measurement method in large-scale obstructed space[J]. Journal of Applied Optics, 2022, 43(1): 95-99. DOI: 10.5768/JAO202243.0103004
    [4]LI Zhipeng, ZHAO Changming, ZHANG Haiyang, ZHANG Zilong, WU Xuan. Application of multi-scale fusion super-resolution algorithm in UAV detection[J]. Journal of Applied Optics, 2021, 42(3): 462-473. DOI: 10.5768/JAO202142.0302003
    [5]Yan Zongqun, Yang Jianchang, Xie Zhihong, Yu Hao, Shi Yunsheng. Optical axis parallelism calibration system of large scale multispectral multioptical axis[J]. Journal of Applied Optics, 2016, 37(6): 823-838. DOI: 10.5768/JAO201637.0601007
    [6]Fu Qiang, Sun Xiu-xia, Liu Shu-guang, Hong Yang, Peng Ke. Novel accurate direction detection method of small-scale motion blurred image[J]. Journal of Applied Optics, 2015, 36(5): 748-754. DOI: 10.5768/JAO201536.0502004
    [7]CHEN Dong, LIN Jian-lin, MA De-bao. Small electro-optical target detection based on two-scale wavelet analysis[J]. Journal of Applied Optics, 2011, 32(3): 492-497.
    [8]HUANG Li-hong. Fog-degraded image enhancement based on single-scale Retinex[J]. Journal of Applied Optics, 2010, 31(5): 728-733.
    [9]FENG Xiao-xia, WANG Ming-quan, ZHAO Yue-ping, GAO Yuan-fei. An edge detection algorithm based on multi-scale tensor[J]. Journal of Applied Optics, 2010, 31(3): 451-454.
    [10]SHAO Jun, HUA Wen-shen, ZHOU Zhong-liang, GAN Hou-ji. Optical correlation image recognition technology to resist scale distortion[J]. Journal of Applied Optics, 2008, 29(4): 503-507.
  • Cited by

    Periodical cited type(1)

    1. 丁一飞, 王永红, 胡悦, 黄安琪, 但西佐. 样本块匹配光栅投影阶梯标定方法. 中国测试. 2016(08): 7-12 .

    Other cited types(2)

Catalog

    Article views (912) PDF downloads (89) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return