Xie Hongbo, Wang Yao, Mao Chensheng, Su Yongpeng, Yang Lei. Micro-lens array for integrative transmitting and receiving continuous scanning[J]. Journal of Applied Optics, 2018, 39(5): 613-618. DOI: 10.5768/JAO201839.0501004
Citation: Xie Hongbo, Wang Yao, Mao Chensheng, Su Yongpeng, Yang Lei. Micro-lens array for integrative transmitting and receiving continuous scanning[J]. Journal of Applied Optics, 2018, 39(5): 613-618. DOI: 10.5768/JAO201839.0501004

Micro-lens array for integrative transmitting and receiving continuous scanning

More Information
  • Received Date: April 16, 2018
  • Revised Date: May 08, 2018
  • A newly designed micro-lens array, being used integrative transmitting and receiving combined with continuous scanning, was proposed and demonstrated. Based on the typical Kepler telescope structure with a field lens, the micro-lens arrays with three-piece style, conducts the selection of receiving field of view (FOV) and the synchronous deflection of transmitting light with large FOV by laterally slight displacement between the two contiguous micro-lenses. In order to avoid the loss and crosstalk of light energy, the visual magnification of telescope is constrained to be 1 which makes the apertures of micro-elements in incident and emitting ports keep consistent. With the ZEMAX software, the entire optical model is mainly composed of transmitting and receiving parts that are designed independently and joined together later. The micro-lens array's central wavelength is 1 064 nm, with ±1.06° instantaneous FOV and ±10° scanning FOV, the size of each micro-element is 1 mm×1 mm.In addition, the bilateral scanning can be realized with only one moving element.The designed system is characterized by the advantages including compact size, large scanning range and high sensitivity.
  • [1]
    徐超, 金伟其, 李雅琼.光学微扫描器技术及其实现方式[J].红外技术, 2006, 28(6):338-342. doi: 10.3969/j.issn.1001-8891.2006.06.008

    XU Chao, JIN Weiqi, LI Yaqiong. Optical micro-scanner technique and realization[J].Infrared Technology, 2006, 28(6):338-342. doi: 10.3969/j.issn.1001-8891.2006.06.008
    [2]
    周崇喜, 乔立杰, 邓启凌, 等.大数值孔径微透镜阵列激光扫描[J].光电工程, 2001, 28(2):1-3. doi: 10.3969/j.issn.1003-501X.2001.02.001

    ZHOU Chongxi, QIAO Lijie, DENG Qiling, et al. Laser scanning system with large numerical aperture micro-lens arrays[J]. Optoelectronic Engineering, 2001, 28(2):1-3. doi: 10.3969/j.issn.1003-501X.2001.02.001
    [3]
    黄鹰, 向思桦, 陈四海, 等.微型光扫描器研究[J].红外与毫米波学报, 2007, 26(1):26-29. doi: 10.3321/j.issn:1001-9014.2007.01.006

    HUANG Ying, XIANG Siye, CHEN Sihai, et al. Study on micro optical scanner[J]. Journal of Infrared and Millimeter Waves, 2007, 26(1):26-29. doi: 10.3321/j.issn:1001-9014.2007.01.006
    [4]
    董珊.微透镜扫描器的研究[D].武汉: 华中科技大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10487-2009038325.htm

    DONG Shan. Research on beam steering with micro-lens arrays[D]. Wuhan: Huazhong University of Science and Technology, 2007: 1-13. http://cdmd.cnki.com.cn/Article/CDMD-10487-2009038325.htm
    [5]
    郁道银, 谈恒英.工程光学[M].3版.北京:机械工业出版社, 2013.

    YU Daoyin, TAN Hengying. Engineering optics[M]. 3rd ed. Beijing:Machinery Industry Press, 2013.
    [6]
    RADTKE D, DUPARRÉ J, DANNBERG P. Implementation of field lens arrays in beam-deflecting micro-lens array telescopes[J]. Applied Optics, 2004, 43(25):4854-61. doi: 10.1364/AO.43.004854
    [7]
    GIBSON J L, DUNCAN B D, BOS P, et al. Wide-angle beam steering for infrared countermeasures applications[J]. SPIE, 2002, 4723:100-111. https://www.researchgate.net/publication/259275288_Wide-angle_beam_steering_for_infrared_countermeasures_applications
    [8]
    GIBSON J L, WATSON E A. Wide-angle decentered lens beam steering for infrared countermeasures applications[J]. Optical Engineering, 2004, 43(10):2312-2321. doi: 10.1117/1.1789137
    [9]
    RUNGENHAGEN M, KUNZ M, ROMASEW E, et al. Monostatic ladar demonstrator with micro-optical bidirectional beam control[C].US: SPIE, 2009. https://www.researchgate.net/publication/253776959_Monostatic_Ladar_demonstrator_with_micro-optical_bidirectional_beam_control
    [10]
    张以谟.应用光学[M].3版.北京:北京电子工业出版社, 2008.

    ZHANG Yimo. Applied optics[M]. Beijing: Publishing House of Electronics Industry, 2008.
    [11]
    田霏, 刘现磊, 张效栋, 等.微透镜阵列加工误差对光学性能的影响[J].光学学报, 2016(2):178-186. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201602025

    TIAN Fei, LIU Xianlei, ZHANG Xiaodong, et al. Effect of machining error on optical properties of micro-lens array[J]. Acta Optica Sinica, 2016(2):178-186. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201602025
    [12]
    张磊.高压压电陶瓷驱动电源技术研究[D].哈尔滨: 哈尔滨工业大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10213-1014084010.htm

    ZHANG Lei. Research on the power supply technology of high voltage piezoelectric ceramics[D]. Harbin: Harbin Institute of Technology, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10213-1014084010.htm
    [13]
    余怀之.红外光学材料[M]. 2版.北京:国防工业出版社, 2015.

    YU Huaizhi. Infrared optical materials[M]. 2nd ed. Beijing:National Defense Industry Press, 2015.
  • Related Articles

    [1]SHANG Han, MENG Xiangxiang, QIU Mingjie. Optical design of ultraviolet continuous zoom lens for sulfur dioxide remote sensing monitoring[J]. Journal of Applied Optics, 2024, 45(6): 1108-1114. DOI: 10.5768/JAO202445.0601001
    [2]WANG Meiqin, PAN Haijun. Design of continuous zoom area array scanning infrared optical system with large area array[J]. Journal of Applied Optics, 2024, 45(2): 292-299. DOI: 10.5768/JAO202445.0201003
    [3]WANG Meiqin, PAN Haijun, LIU Bin. Design of wide-band continuous zoom optical system with 40x large zoom ratio[J]. Journal of Applied Optics, 2023, 44(2): 246-252. DOI: 10.5768/JAO202344.0201002
    [4]YANG Ao, CAO Jie, HAO Qun, CHEN Chuanxun, GAO Guanlei. Design of retina-like scanning system based on distortion effect of lens[J]. Journal of Applied Optics, 2021, 42(3): 418-422. DOI: 10.5768/JAO202142.0301007
    [5]GU Xiansong. Compact MWIR continuous zoom optical system with large zoom range[J]. Journal of Applied Optics, 2019, 40(1): 33-38. DOI: 10.5768/JAO201940.0101006
    [6]Wu Xuepeng, Hu Jixian. Design of continuous zoom optical system for periscope[J]. Journal of Applied Optics, 2018, 39(2): 192-195. DOI: 10.5768/JAO201839.0201006
    [7]Jiao Mingyin, Kang Wenli, Zhou Xiaobin. Optical de-scanning technique in search and track systems using focal plane array detectors[J]. Journal of Applied Optics, 2017, 38(4): 521-525. DOI: 10.5768/JAO201738.0401001
    [8]Cui En-kun, Zhang Bao, Hong Yong-feng. Design of initial structure of infrared zoom optical system with PW solution[J]. Journal of Applied Optics, 2014, 35(4): 586-591.
    [9]GE Jing-jing, LIN Zhao-rong, ZHU Da-kai. Design of mid-wave infrared continuous zoom system[J]. Journal of Applied Optics, 2013, 34(5): 728-732.
    [10]LIU Kai, CHEN Rong-li, CHANG Ling-ying, LEI Guang-zhi, ZOU Gang-yi. Common-aperture dual-channel infrared scanning imaging optical system[J]. Journal of Applied Optics, 2012, 33(2): 395-401.
  • Cited by

    Periodical cited type(8)

    1. 段沽坪,汪滨波,魏恭,朱弋. 一种2~18 GHz超宽带模拟控温微波光发射机设计. 光通信技术. 2022(01): 30-34 .
    2. 喻武龙. 基于单片机的激光二极管温度控制研究. 激光杂志. 2020(01): 148-153 .
    3. 王莹. 手机玻璃面板摄像孔检测系统的氦氖激光器驱动电路设计. 电脑与电信. 2020(10): 43-45 .
    4. 赵若曼. 基于激光传感器的物理实验室智能监控系统设计. 激光杂志. 2019(09): 151-154 .
    5. 苏有菊,王玉华,张福泉. 低功耗激光发生器最优概率跳变选取研究(英文). 机床与液压. 2018(06): 96-103 .
    6. 陆剑锋,金红军. 激光发生器中的数据分类数学模型设计. 激光杂志. 2018(12): 125-129 .
    7. 苏燕,徐艳华. 基于单片机的激光测距系统设计. 激光杂志. 2017(09): 128-131 .
    8. 黄志武,王曙霞. 短距离对接激光发生器的嵌入式设计. 激光杂志. 2017(10): 52-55 .

    Other cited types(2)

Catalog

    Article views (838) PDF downloads (139) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return