Huang Yang, Wang Chunyu, Niu Jinchuan, Wang Cong, Zhang Shengjie, Zong Xiaoying. High-precision measurement of focal length for long-focus infrared optical system[J]. Journal of Applied Optics, 2017, 38(6): 995-998. DOI: 10.5768/JAO201738.0606002
Citation: Huang Yang, Wang Chunyu, Niu Jinchuan, Wang Cong, Zhang Shengjie, Zong Xiaoying. High-precision measurement of focal length for long-focus infrared optical system[J]. Journal of Applied Optics, 2017, 38(6): 995-998. DOI: 10.5768/JAO201738.0606002

High-precision measurement of focal length for long-focus infrared optical system

More Information
  • Received Date: July 26, 2017
  • Revised Date: August 21, 2017
  • In order to improve the accuracy of focal length measurement for long-focus focal infrared optical system, a new method is proposed, that includes interferometry, photoelectric auto-collimation, and laser tracking technique. Based on the wavefront interferometry optical path, it can be realized that the focal length for long-focus infrared optical system is measured with high accuracy, by using the features that the power of wavefront is very sensitive to the position of spherical mirror, and combining with the high-precision position measurement function by laser tracker and the high-precision angle measurement function by photoelectric autocollimator.A long-focus infrared optical system for aerial reconnaissance was tested in the experiment, whose theoretical focal length was 1 520 mm, and the testing error was analyzed according to the accuracy of the equipments. The standard deviation of 5 measurments results was 0.930 mm, and the measurement error was less than 0.2%, meeting the test technical requirements. The experimental result shows that the method is successful and effective to measure the focal length of long-focus infrared optical system accurately.
  • [1]
    岳涛, 李博, 陈晓丽, 等.空间光学发展现状和未来发展[J].航天返回与遥感, 2011, 32 (5): 1-9. doi: 10.3969/j.issn.1009-8518.2011.05.003

    Yue Tao, Li Bo, Chen Xiaoli, et al. The current and future development of space optics[J].Spacecraft Recovery & Remote Sensing, 2011, 32(5): 1-9. doi: 10.3969/j.issn.1009-8518.2011.05.003
    [2]
    杨建宇, 林家明, 余俊, 等.基于数字图像处理方法的焦距测量技术研究[J].光学技术, 2007, 33 (5): 796-798. doi: 10.3321/j.issn:1002-1582.2007.05.017

    Yang Jianyu, Lin Jiaming, Yu Jun, et al. Research on focal length measurement based on digital image processing[J].Optical Technique, 2007, 33 (5): 796-798. doi: 10.3321/j.issn:1002-1582.2007.05.017
    [3]
    赵康.利用泰伯-莫尔法的透镜长焦距测量[D].成都: 四川大学, 2005: 1-4.

    Zhao Kang. Measurement of long focal length of lens utilizing Talbot effect and Morie technique[D]. Chengdu: Sichuan University, 2005: 1-4.
    [4]
    吴玲玲, 王星, 陈靖, 等.基于Talbot-Moiré法的长焦透镜焦距测量的极限精度分析[J].应用光学, 2011, 32 (4): 693-697. doi: 10.3969/j.issn.1002-2082.2011.04.020

    Wu Lingling, Wang Xing, Chen Jing, et al. Limit precision analysis of focal length measurement of lens based on Talbot-Moiré[J]. Journal of Applied Optics, 2011, 32 (4): 693-697. doi: 10.3969/j.issn.1002-2082.2011.04.020
    [5]
    王生云, 郑雪, 杨红, 等.红外光学系统焦距测量装置校准规范说明[J].应用光学, 2007, 28 (6): 806-808. doi: 10.3969/j.issn.1002-2082.2007.06.030

    Wang Shengyun, Zheng Xue, Yang Hong, et al. Explanation of calibration specification for IR optical focal length measuring equipment[J]. Journal of Applied Optics, 2007, 28 (6): 806-808. doi: 10.3969/j.issn.1002-2082.2007.06.030
    [6]
    姚震, 吴易明, 高立民, 等.长焦距红外光学系统焦距检测方法[J].红外与激光工程, 2014, 43 (6): 1950-1954. doi: 10.3969/j.issn.1007-2276.2014.06.045

    Yao Zhen, Wu Yiming, Gao Limin, et al. Method of focal length measurement for infrared optical system with long focal length[J]. Infrared and Laser Engineering, 2014, 43 (6): 1950-1954. doi: 10.3969/j.issn.1007-2276.2014.06.045
    [7]
    陈磊, 高志山, 何勇.红外光学透镜焦距测量[J].光子学报, 2004, 33 (8): 986-988. http://d.old.wanfangdata.com.cn/Periodical/gzxb200408024

    Chen Lei, Gao Zhishan, He Yong. Focal length measurement of infrared lenses[J]. Acta Photonica Sinca, 2004, 33 (8): 986-988. http://d.old.wanfangdata.com.cn/Periodical/gzxb200408024
    [8]
    杨振刚, 陈海清.红外光学系统焦距测量的研究[J].光学与光电技术, 2011, 9 (6): 33-35. doi: 10.3969/j.issn.1672-3392.2011.06.007

    Yang Zhengang, Chen Haiqing. Infrared optic systems focus measurement[J]. Optics& Optoelectronic Technology, 2011, 9 (6): 33-35. doi: 10.3969/j.issn.1672-3392.2011.06.007
    [9]
    黄阳, 王春雨, 李晓轩.离轴二次非球面反射镜几何参数的高精度测量[J].光学与光电技术, 2016, 14 (1): 56-59. http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201601012

    Huang Yang, Wang Chunyu, Li Xiaoxuan. High-precision measurement of the geometrical paramenters of conic off-axis aspheric mirrors[J]. Optics & Optoelectronic Technology, 2016, 14(1): 56-59. http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201601012
    [10]
    瞿伟, 刘卫林, 刘银辉.长焦距变焦镜头的温度分析及补偿[J].应用光学, 2015, 36 (5): 717-722. http://d.old.wanfangdata.com.cn/Periodical/yygx201505009

    Qu Wei, Liu Weilin, Liu Yinhui. Thermal analysis and compensation of long zoom lens[J]. Journal of Applied Optics, 2015, 36 (5): 717-722. http://d.old.wanfangdata.com.cn/Periodical/yygx201505009
  • Cited by

    Periodical cited type(8)

    1. 杜国军,王春雨,欧宗耀,王聪,胡斌. 多基准轴透射式系统装调方法. 应用光学. 2021(02): 247-254 . 本站查看
    2. 邓佳逸,常伟军,王楠茜,邱亚峰. 基于反射式平行光管法的紫外透镜焦距测试研究. 红外技术. 2021(10): 925-929 .
    3. 王东杰,柯君玉,王海超,阴刚华. 光学装调中的一种基于猫眼效应的焦距测试方法. 光学技术. 2020(04): 466-471 .
    4. 赵希婷,张超,冀翼,刘辉,焦文春,黄阳,李重阳,张志飞. 超宽视场离轴光学系统畸变一致性校正技术. 应用光学. 2020(05): 1032-1036 . 本站查看
    5. 邢辉,张占东,刘剑峰,宋俊儒,金忠瑞,刘志远. 多谱段多通道离轴三反空间相机装调. 红外. 2020(12): 1-11 .
    6. 李晓磊. 基于平行光管法的薄凸透镜焦距测量. 应用光学. 2019(05): 859-862 . 本站查看
    7. 裴昱,陈远鸣,卞晓阳,赵勇毅,赵正杰,常建华. 基于RBF神经网络气压补偿的非色散红外SF_6气体传感器. 应用光学. 2018(03): 366-372 . 本站查看
    8. 蒋正东,朱荣刚,陈磊,何勇. 基于双朗奇光栅的焦距测量技术研究. 应用光学. 2018(05): 687-690 . 本站查看

    Other cited types(1)

Catalog

    Article views (2054) PDF downloads (206) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return