Zhao Yulan, Yuan Quande, Meng Xiangping. Double-image encryption algorithm based on discrete fractionalrandom transform and weighted histogram cross permutation[J]. Journal of Applied Optics, 2017, 38(6): 937-946. DOI: 10.5768/JAO201738.0602006
Citation: Zhao Yulan, Yuan Quande, Meng Xiangping. Double-image encryption algorithm based on discrete fractionalrandom transform and weighted histogram cross permutation[J]. Journal of Applied Optics, 2017, 38(6): 937-946. DOI: 10.5768/JAO201738.0602006

Double-image encryption algorithm based on discrete fractionalrandom transform and weighted histogram cross permutation

More Information
  • Received Date: April 05, 2017
  • Revised Date: June 07, 2017
  • In order to achieve the synchronously encryption of two images, reduce the transmission load and improve the ability of anti-plaintext attack, a double-image encryption algorithm was proposed by discrete fractional random transform and weighted pixel chaos scrambling. A new Tent map was designed by introducing two order parameters into the Tent mapping. Then the weighted histogram model was constructed according to the plain pixel value to generate the initial value of new tent map by combining with the 256 bits external key. Two sets of random sequences were outputted by using the initial value to iterate the fractional order Tent map to confuse the two pixel positions for obtaining two scrambling cipher. The sparse representation of two scrambling cipher was done by discrete wavelet transform (DWT) technology. The random circular matrix was defined according to the chaotic sequence, and the measurement matrix of two scrambling cipher was obtained by jointing sparse representation. The image fusion model was established based on random mask and modulation phase mask to take two measurement matrices into composite image. The composite image was diffused based on discrete fractional random transform to obtain the cipher. Experimental results show that the proposed algorithm has stronger ability to resist plaintext attack which NPCR、UACI of cipher is up to 99.83%, 34.57%, and higher user response in comparison with current multi-image encryption scheme. This algorithm has high encryption security which can effectively resist external attacks in the network and ensure the safe transmission of images.
  • [1]
    Liu Wenhao, Sun Kehui, Zhu Congxu. A fast image encryption algorithm based on chaotic map[J].Optics and Lasers in Engineering, 2016, 84(7): 26-36. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_cad4815529526c927a54f6d3bcd735ec
    [2]
    Zhang Yong.The image encryption algorithm with plaintext-related shuffling[J]. IETE Technical Review, 2016, 33(3):310-322. doi: 10.1080/02564602.2015.1087350
    [3]
    孙倩, 胡苏.基于DNA编码与统计信息优化的图像加密算法[J].计算机应用研究, 2016, 33(2):1109-1117. http://d.old.wanfangdata.com.cn/Periodical/jsjyyyj201709052

    Sun Qian, Hu Su.Image encryption algorithm based on DNA coding and statistical information optimization[J].Computer Application Research, 2016, 33(2):1109-1117. http://d.old.wanfangdata.com.cn/Periodical/jsjyyyj201709052
    [4]
    Belazi A, El-Latif AAA, Diaconu A V.Chaos-based partial image encryption scheme based on linear fractional and lifting wavelet transforms[J]. Optics and Lasers in Engineering, 2017, 88(6): 37-50. http://cn.bing.com/academic/profile?id=987bdce7dfd3df9237cbecbc3ef5dd29&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    Wu Xiangjun, Wang Dawei, Kurths Jürgen. A novel lossless color image encryption scheme using 2D DWT and 6D hyperchaotic system[J]. Information Sciences, 2016, 350(6): 137-153. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f24b11a7a013921cb74079dd17f4e04f
    [6]
    陈翼翔, 汪小刚.基于双随机相位编码的非线性双图像加密方法[J].光学学报, 2014, 11 (7): 54-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201407008

    Chen Yixiang, Wang Xiaogang. Nonlinear double image encryption method based on double random phase encoding[J]. Journal of Optics, 2014, 11(7): 54-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201407008
    [7]
    秦怡, 巩琼, 吕晓东, 等.基于干涉原理的双图像加密系统[J].应用光学, 2014, 34(2): 260-266. http://d.old.wanfangdata.com.cn/Periodical/yygx201302013

    Qin Yi, Gong Qiong, Lyu Xiaodong, et al. Dual image encryption system based on interference principle[J]. Journal of Applied Optics, 2014, 34 (2): 260-266. http://d.old.wanfangdata.com.cn/Periodical/yygx201302013
    [8]
    Rajput S K, Nishchal N K. Optical double image security using random phase fractional Fourier domain encoding and phase-retrieval algorithm[J]. Optics Communications, 2016, 388(4): 38-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=56433d5e4e6cd3a7fdfeec7c37620a48
    [9]
    张同锋.基于一维复合混沌映射的数字图像加密算法研究[D].甘肃: 兰州大学, 2016: 30-37. http://cdmd.cnki.com.cn/Article/CDMD-10730-1016725628.htm

    Zhang Tongfeng. Digital image encryption algorithm based on one-dimensional complex chaotic map[D]. Gansu: Lanzhou University, 2016: 30-37. http://cdmd.cnki.com.cn/Article/CDMD-10730-1016725628.htm
    [10]
    Jiang Y, Wang Y, Luo H. Image denoising method for unknown noise based on 2-D FWT with optimal fractional order[J]. Journal of Computers, 2014, 9(2): 1-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=faab2b98c15b92bc0908537e57bcb7f9
    [11]
    吴丽, 余文春.快速置乱耦合3D混沌映射的图像加密算法研究[J].电视技术, 2014, 38(19): 51-56. doi: 10.3969/j.issn.1002-8692.2014.19.012

    Wu Li, Yu Wenchun. Image encryption algorithm for fast scrambling coupled 3D chaotic mapping[J]. Video Engineering, 2014, 38(19): 51-56. doi: 10.3969/j.issn.1002-8692.2014.19.012
    [12]
    Taouil Y, Ameur E B, Belghiti M T. New image steganography method based on Haar discrete wavelet transform[J]. Europe and MENA Cooperation, 2017, 520(18): 287-297. http://cn.bing.com/academic/profile?id=277888be69657e9f00c4c77543c7730f&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    宫丽美, 张旻, 王方超.基于压缩感知算法的图像压缩保密方法[J].探测与控制学报, 2017, 39(1): 106-111. http://d.old.wanfangdata.com.cn/Periodical/tcykzxb201701021

    Gong Limei, Zhang Yan, Wang Fangchao. Image compression security method based on compressed sensing algorithm[J]. Journal of Detection and Control, 2017, 39(1): 106-111. http://d.old.wanfangdata.com.cn/Periodical/tcykzxb201701021
    [14]
    Chen L, Chang G, He B. Optical image conversion and encryption by diffraction, phase retrieval algorithm and incoherent sup[J]. 2017, 88(10): 221-232. https://www.sciencedirect.com/science/article/abs/pii/S0143816616301865
    [15]
    Zamrani W, Ahouzi E, Lizana A. Optical image encryption technique based on deterministic phase masks[J]. Optical Engineering, 2016, 55(10): 103108-103116. doi: 10.1117/1.OE.55.10.103108
    [16]
    Sui L, Lu H, Wang Z. Double-image encryption using discrete fractional random transform and logistic maps[J]. Optics and Lasers in Engineering, 2016, 56(9): 1-12. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232264081/
    [17]
    文昌辞, 王沁, 刘向宏.基于仿射和复合混沌的图像加密新算法[J].计算机研究与发展, 2013, 50(2): 319-324. http://d.old.wanfangdata.com.cn/Periodical/jsjyjyfz201302010

    Wen Changci, Wang Qin, Liu Xianghong. New algorithm of image encryption based on affine and complex chaos[J].Computer Research and Development, 2013, 50(2): 319-324. http://d.old.wanfangdata.com.cn/Periodical/jsjyjyfz201302010
    [18]
    Liu Y, Zhang L Y, Wang J. Chosen-plaintext attack of an image encryption scheme based on modified permutation-diffusion structure[J]. 2016, 84(4): 2241-2250. http://arxiv.org/abs/1503.06638?context=cs
    [19]
    李凯佳, 俞锐刚, 袁凌云.基于DNA-记忆元胞自动机与Hash函数的图像加密算法[J].计算机工程与设计, 2017, 38(2): 470-477. http://d.old.wanfangdata.com.cn/Periodical/jsjgcysj201702036

    Li Kaijia, Yu Ruigang, Yuan Lingyun. Image encryption algorithm based on DNA-memory cellular automata and Hash function[J].Computer Engineering and Design, 2017, 38(2): 470-477. http://d.old.wanfangdata.com.cn/Periodical/jsjgcysj201702036
    [20]
    Simcox T, Fiez J A. Collecting response times using Amazon mechanical Turk and adobe flash[J]. Behavior Research Methods, 2014, 46(1): 95-111. doi: 10.3758/s13428-013-0345-y
    [21]
    海洁, 杜海龙, 邓小鸿.基于快速混沌置乱的鲁棒型医学图像加密算法[J].计算机应用, 2015, 35(2): 430-434. http://d.old.wanfangdata.com.cn/Periodical/jsjyy201502029

    Hai Jie, Du Hailong, Deng Xiaohong. A robust medical image encryption algorithm based on fast chaotic scrambling[J]. Computer Applications, 2015, 35 (2): 430-434. http://d.old.wanfangdata.com.cn/Periodical/jsjyy201502029
  • Related Articles

    [1]LU Xiaoyan, SHEN Meng, WANG Jie, LI Jiaheng, YANG Yizhou, HE Xi, CAO Yuju, PANG Lan. Long-time tracking technology for ground targets based on deep learning[J]. Journal of Applied Optics, 2025, 46(2): 343-354. DOI: 10.5768/JAO202546.0202007
    [2]LI Yingjuan, XU Kailuan, LIU Peizhen, SONG Jinhong, CAO Yuju, ZHANG Xuhui. Tracking of infrared sea-skimming small target with sea-sky line[J]. Journal of Applied Optics, 2024, 45(1): 70-78. DOI: 10.5768/JAO202445.0102001
    [3]CAI Wei, XU Peiwei, YANG Zhiyong, JIANG Xinhao, JIANG Bo. Dim-small targets detection of infrared images in complex backgrounds[J]. Journal of Applied Optics, 2021, 42(4): 643-650. DOI: 10.5768/JAO202142.0402002
    [4]FAN Pengcheng, ZHANG Weiguo, LIU Wangang, ZHANG Wei, HUANG Weidong, LIU Guodong, XU Xiaofeng. Infrared weak small target detection algorithm based on embedded GPU[J]. Journal of Applied Optics, 2020, 41(5): 1089-1095. DOI: 10.5768/JAO202041.0506004
    [5]LI Xiaoning, LEI Tao, ZHONG Jiandan, TANG Zili, JIANG Ping. Detecting method of small vehicle targets based on improved SSD[J]. Journal of Applied Optics, 2020, 41(1): 150-155. DOI: 10.5768/JAO202041.0103004
    [6]Zhou Yuan, Zhang Jianming, Lin Xiao. Infrared small target detection using weighting LoG operator[J]. Journal of Applied Optics, 2017, 38(1): 114-119. DOI: 10.5768/JAO201738.0106003
    [7]CHEN Dong, LIN Jian-lin, MA De-bao. Small electro-optical target detection based on two-scale wavelet analysis[J]. Journal of Applied Optics, 2011, 32(3): 492-497.
    [8]HE Peng-fei, SU Xin-yan, WANG jian. Small target detection based on image sequences[J]. Journal of Applied Optics, 2011, 32(2): 272-275.
    [9]ZHANG Heng, LI You, LI Li-chun, LEI Zhi-hui. Scale-adaptive real-time detection for small targets[J]. Journal of Applied Optics, 2008, 29(1): 9-13.
    [10]CHEN Dong-yan, ZHANG Qi, WANG Yan-ling, LUO Shi-tu. Implementation of maneuver target prediction in image tracking system[J]. Journal of Applied Optics, 2007, 28(1): 33-37.
  • Cited by

    Periodical cited type(15)

    1. 王婧骅,崔璨,张云飞,段玉玮,赵婉茹. 基于循环神经网络的异常用电数据检测方法. 电子设计工程. 2024(01): 120-123+128 .
    2. 彭雪玲,林珊玲,林志贤,郭太良. 改进的YOLOv5s太阳能电池片缺陷检测算法. 液晶与显示. 2024(02): 237-247 .
    3. 刘玉淇,吴一全. 基于机器视觉的太阳能电池片缺陷检测算法综述. 光学精密工程. 2024(06): 868-900 .
    4. 何翔,杨爱军,黎健生,陈彩云,游宏亮. 基于cycleGAN的太阳电池电致发光图像数据增强方法. 液晶与显示. 2024(08): 1057-1069 .
    5. 林维修,李峰,王海峰,许育燕,金科扬. 基于图像处理的光伏组件热斑缺陷检测方法. 计算技术与自动化. 2024(03): 121-126 .
    6. 李莉杰,高方,李元涛,田壮梅,吕莉源,张梦洁. 储能设备电池极片缺陷检测网络研究. 电力大数据. 2024(06): 22-31 .
    7. 张引贤,张展耀,张希雅. 基于边缘神经网络的海岛光伏表面异常检测. 浙江电力. 2024(12): 95-103 .
    8. 葛钊明,胡跃明. 基于改进YOLOv5的锂电池极片缺陷检测. 激光杂志. 2023(02): 25-29 .
    9. 何翔. 基于DCGANs的半片光伏组件电致发光图像增强技术. 应用光学. 2023(02): 314-322 . 本站查看
    10. 刘耀迪,肖钰蕙,杨超. 智能化光伏缺陷检测系统. 光源与照明. 2023(06): 136-138 .
    11. 王云冰,付晓刚,牛源. 基于无人机光伏巡检的路线优化与故障检测. 上海电机学院学报. 2023(05): 275-280 .
    12. 艾上美,周剑峰,张必朝,张涛,王红斌. 基于改进SSD算法的光伏组件缺陷检测研究. 智慧电力. 2023(12): 53-58 .
    13. 刘敏,陈凌宇,钱洲亥,李治国. 光伏电池片弱边缘缺陷空耦超声特征检测. 制造业自动化. 2022(04): 191-195 .
    14. 符长虹,陈锟辉,鲁昆瀚,郑光泽,赵吉林. 面向边缘智能光学感知的航空紧固件旋转检测. 应用光学. 2022(03): 472-480 . 本站查看
    15. 凌旭峰,周丽婕,祝毓,杨红卫,杨杰. 基于生成式自监督学习的太阳能电池板缺陷检测. 机械制造. 2022(07): 12-18 .

    Other cited types(8)

Catalog

    Article views (821) PDF downloads (125) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return