Wang Zhiqiang, Yang Ke, Li Yuan, Yan Hongwei, Yuan Xiaodong, Zhang Lijuan, Liu Taixiang. Effect of static/dynamic etching on surface quality andlaser-induced damage of fused silica[J]. Journal of Applied Optics, 2017, 38(5): 837-843. DOI: 10.5768/JAO201738.0507003
Citation: Wang Zhiqiang, Yang Ke, Li Yuan, Yan Hongwei, Yuan Xiaodong, Zhang Lijuan, Liu Taixiang. Effect of static/dynamic etching on surface quality andlaser-induced damage of fused silica[J]. Journal of Applied Optics, 2017, 38(5): 837-843. DOI: 10.5768/JAO201738.0507003

Effect of static/dynamic etching on surface quality andlaser-induced damage of fused silica

More Information
  • Received Date: March 08, 2017
  • Revised Date: April 18, 2017
  • In order to investigate evolution rules of surface quality and laser damage resistance performance during static/dynamic etching process, and optimize chemical etching technologies, fused silica were treated by static/dynamic etching for different time respectively using the buffered hydrofluoric(HF) acid.Experiment results show that the dynamic etching rate of fused silica is higher than the static etching rate due to megasonic agitation. The surface root-mean-square(RMS) roughness and reflection profile peak valley (PV) value of dynamically etching surface are < 1 nm and 0.46λ, respectively, and 355 nm transmission of dynamically etched surface first increases in a small range (0.1%) and subsequently remains steady. Moreover, the surface RMS roughness and reflection profile PV of statically etched surface increase to ~5 nm and 0.82λ, respectively, and the 355 nm transmission of statically etched fused silica first remains basically steady and subsequently decreases by 0.4% aproximately. Damage thresholds of fused silica treated by static/dynamic etching present obviously different changement laws:the damage thresholds of fused silica increase by about 30% and then decrease gradually during static etching, while that increase by about 100% and then keep relatively steady during dynamic etching. The results above show that the properties of fused silica optics treated by dynamic etching are significantly better than that of static etching.
  • [1]
    Spaeth M L, Wegner P J, Suratwala T I, et al. Optics recycle loop strategy for NIF operations above UV laser-induced damage threshold[J]. Fusion Sci. Technol., 2016, 69(1): 265-294. doi: 10.13182/FST15-119
    [2]
    Shi F, Tian Y, Peng X, et al. Combined technique of elastic magnetorheological finishing and HF etching for high-efficiency[J]. Appl. Opt., 2013, 53(4): 598-604. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bfdbdc12b40d4d1aec459b1625864730
    [3]
    黄进, 吕海兵, 叶琳, 等.利用CO2激光预处理提高熔石英基片的损伤阈值[J].中国激光, 2007, 34(5): 723-726. doi: 10.3321/j.issn:0258-7025.2007.05.024

    Huang Jin, Lyu Haibing, Ye Lin, et al.Damage threshold improvement of fused silica chip by CO2 laser pretreatment[J].Chinese J.Lasers, 2007, 34(5): 723-726. doi: 10.3321/j.issn:0258-7025.2007.05.024
    [4]
    王锋, 吴卫东, 蒋晓东, 等.反应等离子体修饰熔石英光学元件表面研究[J].光学学报, 2011, 31(5): 0522003. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201105033

    Wang Feng, Wu Weidong, Jiang Xiaodong, et al.Study of surface modification of fused silica optical component by reactive plasma[J].Acta Optica Sinica, 2011, 31(5):0522003 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201105033
    [5]
    Suratwala T I, Miller P E, Bude J D, et al. HF-based etching processes for improving laser damage resistance of fused silica optical surfaces[J]. J. Am. Ceram. Soc., 2011, 94(2): 416-428. doi: 10.1111/j.1551-2916.2010.04112.x
    [6]
    Bude J, Miller P, Baxamusa S, et al. High fluence laser damage precursors and their mitigation in fused silica[J]. Opt. Express, 2014, 22(5): 5839-5851. doi: 10.1364/OE.22.005839
    [7]
    Ye H, Li Y, Yuan Z, et al. Laser induced damage characteristics of fused silica optics treated by wet chemical processes[J]. Appl. Surf. Sci., 2015, 357: 498-505. doi: 10.1016/j.apsusc.2015.09.065
    [8]
    Ye H, Li Y, Zhang Q, et al. Post-processing of fused silica and its effects on damage resistance to nanosecond pulsed UV lasers[J]. Appl. Opt., 2016, 55(11): 3017-3025. doi: 10.1364/AO.55.003017
    [9]
    蒋勇, 袁晓东, 向霞, 等.熔石英亚表面微缺陷原位表征及损伤阈值研究[J].光电子激光, 2010, 21(10): 1519-1523. doi: 10.1007-s00198-009-1150-4/

    Jiang Yong, Yuan Xiaodong, Xiang Xia, et al. In-situ characterization of subsurface microdefects and damage threshold of the fused silica[J].J.Optoelectronics Laser, 2010, 21(10): 1519-1523. doi: 10.1007-s00198-009-1150-4/
    [10]
    王凤蕊, 黄进, 刘红婕, 等.激光诱导HF酸刻蚀后熔石英后表面划痕的损伤行为研究[J].物理学报, 2010, 59(7): 5122-5127. http://d.old.wanfangdata.com.cn/Periodical/wlxb201007111

    Wang Fengrui, Huang Jin, Liu Hongjie, et al. Laser induced rear-surface-crack damage properties of fused silica etched with HF solution[J]. Acta Phys.Sin., 2010, 59(7):5122-5127. http://d.old.wanfangdata.com.cn/Periodical/wlxb201007111
    [11]
    Miller P, Suratwala T, Bude J, et al. Methods for globally treating silica optics to reduce optical damage: American, 8313662[P]. 2012-11-20.
    [12]
    王洪祥, 李成福, 周岩, 等.光学元件兆声辅助化学刻蚀工艺参数优化[J].强激光与粒子束, 2015, 27(11): 112010. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201511025

    Wang Hongxiang, Li Chengfu, Zhou Yan, et al.Process parameters optimization for fused silica optics bymegasonic assisted chemical etching[J]. High Power Laser and Particle Beams, 2015, 27(11): 112010. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201511025
    [13]
    Ye X, Huang J, Liu H, et al. Advanced mitigation process(AMP) for improving laser damage threshold of fused silica optics[J]. Scientific Reports, 2016, 6: 31111. doi: 10.1038/srep31111
    [14]
    Wong L, Suratwala T, Feit M D, et al. The effect of HF-NH4F etching on the morphology of surface fractures on fused silica[J]. J. Non-Cryst. Solids, 2009, 355: 797-810. doi: 10.1016/j.jnoncrysol.2009.01.037
    [15]
    殷玉春.酸蚀刻熔石英过程中再沉积物形成机理研究[D].绵阳: 西南科技大学, 2016.

    Yin Yuchun.Study on the formation mechanism of the redeposit in the acid etching on fused silica[D]. Mianyang: Southwest University of Science and Technology, 2016.
    [16]
    Nagarajan R, Awad S, Gopi K R. Methods for removal of particle contaminants, in developments in surface contamination and cleaning[M]. Oxford: Elsevier Inc., 2011.
    [17]
    Steingoetter I, Grosse A, Fouckhardt H. Very deep fused silica etching[J]. SPIE, 2003, 4984: 234-243. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC026270149/
    [18]
    Xu J, Xu X, Wei C, et al. The effect of deep HF etching on the surface quality and figure of fused silica optics[C]. USA: SPIE, 2015.
    [19]
    Hu G, Zhao Y, Liu X, et al. Combining wet etching and real-time damage event imaging to reveal the most dangerous laser damage initiator in fused silica[J]. Opt. Lett., 2013, 38(15): 2632-2635. doi: 10.1364/OL.38.002632
    [20]
    Baxamusa S, Miller P E, Wong L, et al. Mitigation of organic laser damage precursors from chemical processing of fused silica[J]. Opt. Express, 2014, 22(24): 29568-29577. doi: 10.1364/OE.22.029568
  • Related Articles

    [1]PAN Gaowei, SHI Jinfang, QIU Rong, WANG Huili, WAN Qing, ZHANG Zhiwei, WANG Kai. Baseline correction algorithm for laser-induced breakdown spectroscopy[J]. Journal of Applied Optics, 2022, 43(3): 538-543. DOI: 10.5768/JAO202243.0307002
    [2]Jing Min, Hua Dengxin, Le Jing. Simulation of laser induced fluorescence lidar detecting system[J]. Journal of Applied Optics, 2017, 38(1): 131-135. DOI: 10.5768/JAO201738.0107003
    [3]Li Peng, Hang Ling-xia, Xu Jun-qi, Li Lin-jun. Laser-induced damage resist properties of monolayer optical thin films prepared by PECVD technology[J]. Journal of Applied Optics, 2015, 36(2): 206-213. DOI: 10.5768/JAO201536.0201008
    [4]Yang Li-hong, Xie Hui, Su Jun-hong. Surface characteristics study of laser-induced thin film damagebased on similarity measure algorithm[J]. Journal of Applied Optics, 2014, 35(6): 1099-1103.
    [5]Zhang Zhi-hao, Song Qiang, Yao Qiang. Influence of flame atomic absorption on measurement of K using laser-induced breakdown spectroscopy[J]. Journal of Applied Optics, 2014, 35(5): 917-921.
    [6]CHEN Feng, YANG Qing, BIAN Hao, DU Guang-qing, LIU Ke-yin, MENG Xiang-wei, DENG Ze-fang, SHAN Chao. Micro-nano fabrication of femtosecond laser wet etch[J]. Journal of Applied Optics, 2014, 35(1): 150-154.
    [7]OUYANG Sheng, LIU Zhi-chao, XU Qiao. Surface damage precursors in triple-frequency fused silica[J]. Journal of Applied Optics, 2011, 32(6): 1257-1262.
    [8]LI Yong, LU Ji-dong, LIN Zhao-xiang, XIE Cheng-li, LI Jie, LI Peng-yan. Quantitative analysis of lead in soil by laser-induced breakdown spectroscopy[J]. Journal of Applied Optics, 2008, 29(5): 789-792.
    [9]PEI Nan-nan, LIU Guo-rong. Wavelength calibration method based on the laser induced breakdown spectroscopy[J]. Journal of Applied Optics, 2007, 28(1): 68-71.
    [10]CHEN Rui, ZHOU Lin. Laser-induced fluorescence spectra measurement of combustion product components[J]. Journal of Applied Optics, 2006, 27(5): 455-459.
  • Cited by

    Periodical cited type(6)

    1. 刘维慧,梁润泽,赵泉昕,卓朝博,苗永平. 双光源干涉法测量液态薄膜厚度. 大学物理实验. 2024(01): 31-36 .
    2. 易进,张瑞,薛鹏,卜韩,王志斌,李孟委. 基于弹光调制的椭偏测量驱动电路系统设计. 电子设计工程. 2024(04): 32-36+42 .
    3. 杨楠卓,欧阳名钊,周维虎,陈晓梅. 基于光谱反射技术的梯形刻面MEMS高深宽比沟槽深度测量仿真分析. 长春理工大学学报(自然科学版). 2020(02): 48-52+114 .
    4. 刘学聪,苗昕扬,詹洪磊,朱明达,张善哲,赵昆. 基于激光感生电压技术的咖啡粉粒径检测. 应用光学. 2020(05): 1117-1121 . 本站查看
    5. 肖平平,王霏,邓满兰. 基于金属包覆波导结构的纳米间隙测量研究. 激光与光电子学进展. 2020(21): 273-277 .
    6. 肖平平,王霏,邓满兰,胡红武. 基于LSPR的非贵金属纳米薄膜厚度的精确测量. 光电子·激光. 2019(12): 1286-1290 .

    Other cited types(5)

Catalog

    Article views (900) PDF downloads (51) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return