Li Jie, Zhang Xiaoqing, Jia Yudong. Design of spectrum measurement system based on Mach-Zehnder optical fiber interference[J]. Journal of Applied Optics, 2017, 38(4): 679-684. DOI: 10.5768/JAO201738.0408002
Citation: Li Jie, Zhang Xiaoqing, Jia Yudong. Design of spectrum measurement system based on Mach-Zehnder optical fiber interference[J]. Journal of Applied Optics, 2017, 38(4): 679-684. DOI: 10.5768/JAO201738.0408002

Design of spectrum measurement system based on Mach-Zehnder optical fiber interference

More Information
  • Received Date: January 16, 2017
  • Revised Date: March 21, 2017
  • Optical fiber interference spectrometer is widely used in various fields of substance detection, because it has many characteristics such as small size, high resolution, anti-electromagnetic interference, high temperature resistance, etc. A spectrum measuring system based on Mach-Zehnder optical fiber interferometer is designed, which uses an electric optical fiber delay line to modulate the optical path difference.System constitution is introduced, spectrum calculation formula and spectral resolution calculation formula are deduced.Then experimental platform is setup, and a light source with wide spectrum is measured by the system, interference signal is collected and its spectrogram is demodulated.Results show the spectral resolution is 2.085 4 cm-1, when the maximum optical path difference is 0.479 5 cm. Analysis on the system shows that, performance of the optical fiber delay line, to a great extent, determines the resolution, accuracy and precision of the final demodulation spectrum, especially the accuracy of the speed and the delay time, and the linearity.
  • [1]
    王安, 朱灵, 张龙, 等.全光纤傅里叶变换光谱仪的关键技术研究[J].光谱学与光谱分析, 2009, 29(07): 1777-1780. doi: 10.3964/j.issn.1000-0593(2009)07-1777-04

    Wang An, Zhu Ling, Zhang Long, et al.Research on key technologies of all fiber optic Fourier transform sectrometer[J]. Spectroscopy and Spectral Analysis, 2009, 29(07): 1777-1780. doi: 10.3964/j.issn.1000-0593(2009)07-1777-04
    [2]
    朱灵, 刘勇, 张龙, 等.全光纤傅里叶变换光谱仪消偏振衰落技术研究[J].光子学报, 2009, 38(10): 2573-2577. http://d.old.wanfangdata.com.cn/Periodical/gzxb200910026

    Zhu Ling, Liu Yong, Zhang Long, et al. Elimination of polarization fading in fiber Fourier transform spectrometer[J]. Acta Photonica Sinica, 2009, 38(10):2573-2577. http://d.old.wanfangdata.com.cn/Periodical/gzxb200910026
    [3]
    李保生, 刘勇, 王安.光纤傅里叶变换光谱仪中谱线相位误差的乘积法校正[J].量子电子学报, 2007, 24(03): 300-305. doi: 10.3969/j.issn.1007-5461.2007.03.005

    Li Baosheng, Liu Yong, Wang An.Phase error correction by multiplicative method in optical fiber Fourier transform spectrometer[J].Chinese Journal of Quantum Electronics, 2007, 24(03):300-305. doi: 10.3969/j.issn.1007-5461.2007.03.005
    [4]
    巫建东, 朱灵, 张龙, 等.光纤傅里叶变换光谱仪光谱复原软件开发[J].传感器与微系统, 2009, 28(07): 95-97, 100. doi: 10.3969/j.issn.1000-9787.2009.07.031

    Wu Jiandong, Zhu Ling, Zhang Long, et al. Spectral recovery software for fiber Fourier transform spectrometer[J]. Transducer and Microsystem Technologies. 2009, 28(07): 95-97, 100. doi: 10.3969/j.issn.1000-9787.2009.07.031
    [5]
    朱震, 刘勇, 李志刚, 等.应用于光纤相位调制的压电陶瓷驱动电源[J].压电与声光, 2009, 31(04): 486-488, 492. doi: 10.3969/j.issn.1004-2474.2009.04.011

    Zhu Zhen, Liu Yong, Li Zhigang, et al.A PZT driving power of fiber-optic phase modulation[J].Piezoelectectrics & Acoustooptics, 2009, 31(04):486-488, 492. doi: 10.3969/j.issn.1004-2474.2009.04.011
    [6]
    张超, 段发阶, 蒋佳佳, 等.光纤压电陶瓷相位调制系统及其在线标定[J].光电工程, 2011, 38(06): 89-92. doi: 10.3969/j.issn.1003-501X.2011.06.015

    Zhang Chao, Duan Fajie, Jiang Jiajia, et al. Piezoelectric ceramic fiber phase modulation system and its online calibration[J]. Opto-Electronic Engineering, 2011, 38(06): 89-92. doi: 10.3969/j.issn.1003-501X.2011.06.015
    [7]
    刘勇, 周喃, 朱震, 等.压电陶瓷光纤相位调制控制系统的研制[J].量子电子学报, 2008, 25(03): 379-384. doi: 10.3969/j.issn.1007-5461.2008.03.024

    Liu Yong, Zhou Nan, Zhu Zhen, et al. Control system of piezoelectrical fiber-optic phase modulation[J].Chinese Journal of Quantum Electronics, 2008, 25(03): 379-384. doi: 10.3969/j.issn.1007-5461.2008.03.024
    [8]
    杜书, 陈福深.连续可调光延迟线技术研究[J].光纤与电缆及其应用技术, 2007(01): 39-43. doi: 10.3969/j.issn.1006-1908.2007.01.010

    Du Shu, Chen Fushen. Research on continuously tunable optical delay lines[J]. Optical Fiber & Electric Cable, 2007(01): 39-43. doi: 10.3969/j.issn.1006-1908.2007.01.010
    [9]
    Kersey A D, Dandridge A, Tveten A B, et al.Single-mode fiber Fourier transform spectrometer[J]. Electronics Letters, 1985, 21(11):463-464. doi: 10.1049/el:19850328
    [10]
    吴雷, 吴龟灵, 沈建国, 等.大动态范围连续可调光纤实时延迟线的设计与制作[J].光纤与电缆及其应用技术, 2012(03):15-17, 28. http://www.cqvip.com/QK/92012X/201203/42428423.html

    Wu Lei, Wu Guiling, Shen Jianguo, et al.Design and fabrication of wavelength continuous tunable fiber true-time-delay lines with wide dynamic range[J]. Optical Fiber & Electric Cable, 2012(03): 15-17, 28. http://www.cqvip.com/QK/92012X/201203/42428423.html
    [11]
    覃朝坚.高精度连续可调光纤延迟线技术[J].光通信技术, 2016, 40(07): 53-55. http://d.old.wanfangdata.com.cn/Periodical/gtxjs201607016

    Qin Chaojian. Technology of high accuracy continuously tunable optical delay lines[J]. Optical Communication Technology, 2016, 40(07):53-55. http://d.old.wanfangdata.com.cn/Periodical/gtxjs201607016
    [12]
    Stelzle M, Tuchtenhagen J, Rabolt J F.An all-fiber-optic Fourier transform spectrometer[J].Measurement Science & Technology, 1996, 7(11):1619-1630. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ021041427/
    [13]
    余瑞兰, 黄云飞.光纤傅里叶变换光谱仪中光程差调制方案的探讨[J].安徽师范大学学报:自然科学版, 2008, 31(03): 238-240, 246. http://d.old.wanfangdata.com.cn/Periodical/ahsfdx200803008

    Yu Ruilan, Huang Yunfei. Research advances in optical fiber Fourier transform spectrometer[J]. Journal of Anhui Normal University:Natural Science, 2008, 31(03): 238-240, 246. http://d.old.wanfangdata.com.cn/Periodical/ahsfdx200803008
    [14]
    梁联长.电控光可调光纤延迟线: 中国, 204515189U[P].2015-07-29.

    Liang Lianchang. Electrically controllable optical fiber delay line: China, 204515189U[P], 2015-07-29.
    [15]
    梁铨延.物理光学[M].北京:电子工业出版社, 2012: 48-50.

    Liang Quanyan. Physical optics[M]. Beijing: Electronic Industry Press, 2012: 48-50.
    [16]
    翁诗甫, 徐怡庄.傅里叶变换红外光谱分析[M].3版.北京:化学工业出版社, 2016: 64-67.

    Weng Shifu, Xyu Yizhuang. Fourier transform infrared spectroscopy[M].3rd ed.Beijing: Chemical Industry Press, 2016: 64-67.
    [17]
    高亚成.光纤干涉仪稳定性及其工作点的研究[D].北京: 北京交通大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10004-2010119662.htm

    Gao Yacheng. Study on stability and working point of fiber-optic interferometer[D].Beijing: Beijing Jiaotong University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10004-2010119662.htm
  • Related Articles

    [1]Sun Yudan. Study on polarization maintaining fiber Bragg grating strain sensor[J]. Journal of Applied Optics, 2018, 39(6): 942-946. DOI: 10.5768/JAO201839.0608001
    [2]Feng Xugang, Du Cuicui, Zhang Jiayan. Probe design of nanometer measuring machine based on grating strain sensor[J]. Journal of Applied Optics, 2017, 38(3): 506-513. DOI: 10.5768/JAO201738.0308001
    [3]Zhang Yong, Tang Li, Chen Zhe, Yu Jianhui, Zhong Yongchun. Temperature sensor based on surface Bragg grating of sidepolished fiber[J]. Journal of Applied Optics, 2016, 37(4): 633-638. DOI: 10.5768/JAO201637.0408001
    [4]Wang Kang, Gu Jin-liang, Luo Hong-e. Dynamic calibration for Bragg grating strain measurement system[J]. Journal of Applied Optics, 2015, 36(6): 913-917. DOI: 10.5768/JAO201536.0603003
    [5]TANG Li, PENG Yong-jun. Numerical simulation on nonlinear transmissive characteristicsof fiber Bragg grating[J]. Journal of Applied Optics, 2011, 32(2): 308-316.
    [6]XIE Jun-hua, QIN Zi-xiong, ZENG Qing-ke, OU Qi-biao, HUANG Fu, ZHOU Heng-chao. Design of fiber Bragg gratings using particle swarm optimization[J]. Journal of Applied Optics, 2009, 30(4): 674-677.
    [7]WEI Peng, LI Li-jun, GUO Jun-qiang, CHU Yan-ling. Cross sensitivity of temperature in fiber Bragg grating strain sensing[J]. Journal of Applied Optics, 2008, 29(1): 105-109.
    [8]YANG Peng-ling, WANG Qun-shu, FENG Guo-bin, LIU Fu-hua, CHENG Jian-ping. A dynamic strain sensor with fiber Bragg gratings[J]. Journal of Applied Optics, 2008, 29(supp): 105-108.
    [9]LI Zhi-zhong, YANG Hua-yong, LIU Yang, ZHOU Wei-lin, HU Yong-ming. Research on the Pressure Sensing Mechanism of Fiber Bragg Grating[J]. Journal of Applied Optics, 2005, 26(3): 16-19.
    [10]HU Zhi-xin, ZHANG Ling, HE Ju. A Novel Fiber Bragg Grating Pressure Sensor with High Sensitivity[J]. Journal of Applied Optics, 2005, 26(1): 39-41.
  • Cited by

    Periodical cited type(6)

    1. 刘维慧,梁润泽,赵泉昕,卓朝博,苗永平. 双光源干涉法测量液态薄膜厚度. 大学物理实验. 2024(01): 31-36 .
    2. 易进,张瑞,薛鹏,卜韩,王志斌,李孟委. 基于弹光调制的椭偏测量驱动电路系统设计. 电子设计工程. 2024(04): 32-36+42 .
    3. 杨楠卓,欧阳名钊,周维虎,陈晓梅. 基于光谱反射技术的梯形刻面MEMS高深宽比沟槽深度测量仿真分析. 长春理工大学学报(自然科学版). 2020(02): 48-52+114 .
    4. 刘学聪,苗昕扬,詹洪磊,朱明达,张善哲,赵昆. 基于激光感生电压技术的咖啡粉粒径检测. 应用光学. 2020(05): 1117-1121 . 本站查看
    5. 肖平平,王霏,邓满兰. 基于金属包覆波导结构的纳米间隙测量研究. 激光与光电子学进展. 2020(21): 273-277 .
    6. 肖平平,王霏,邓满兰,胡红武. 基于LSPR的非贵金属纳米薄膜厚度的精确测量. 光电子·激光. 2019(12): 1286-1290 .

    Other cited types(5)

Catalog

    Article views (761) PDF downloads (78) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return