Yang Chaopu, Li Chun, Fang Wenqing, Liu Biyu, Liu Mingbao, Zhou Chunsheng. Three-wavelength on-line infrared thermometry for MOCVD[J]. Journal of Applied Optics, 2017, 38(4): 655-659,678. DOI: 10.5768/JAO201738.0406002
Citation: Yang Chaopu, Li Chun, Fang Wenqing, Liu Biyu, Liu Mingbao, Zhou Chunsheng. Three-wavelength on-line infrared thermometry for MOCVD[J]. Journal of Applied Optics, 2017, 38(4): 655-659,678. DOI: 10.5768/JAO201738.0406002

Three-wavelength on-line infrared thermometry for MOCVD

More Information
  • Received Date: February 26, 2017
  • Revised Date: April 16, 2017
  • According to the development needs of on-line infrared thermometry of metal organic chemical vapor deposition(MOCVD), a three-wavelength infrared thermometry is proposed, which can avoid the calibration of the effective area of detector hole and the modification of reflectivity. The design scheme of the three-wavelength (1 300 nm, 1 150 nm, 940 nm) on-line infrared thermometry probe and the light path are presented. The probe is used in the 5.08 cm(2 inch) silicon (111) substrate growing 10 μm GaN epitaxial wafer in THOMAS SWAN CCS MOCVD system.Result shows that the accuracy is within 1℃ in the range from 950℃ to 1 100℃, referring to the EpiTT infrared thermometry.The repeatability is within 1.0℃ from 700℃ to 1 100℃.The distance tolerance is 2 mm.Moreover, the probe is used in the 5.08 cm silicon (111) substrate growing blue light LED epitaxial wafer with InGaN/GaN MQW structure in homemade MOCVD system. Result shows that the lowest range of the probe is equally 435℃.The measurement noise of n-GaN layer during growing is at 0.75℃. The analysis of the measured results indicate that the method for single layer thin film epitaxial growth has the certain practicability, however, further improvements are needed for the multi-layer complex structure epitaxial growth.
  • [1]
    陆大成, 段树坤.金属有机化合物气相外延基础及应用[M].北京:科学出版社, 2009.

    Lu Dacheng, Duan Shukun. Metal organic vapor phase epitaxy base and application[M]. Beijing: Science Press, 2009.
    [2]
    Zhang Jincheng, Li Zhiming, Hao Yue, et al. Finite element analysis and optimization of temperature field in GaN-MOCVD reactor[J]. Sci. China Inform. Sci., 2010, 53(10):2138-2143. doi: 10.1007/s11432-010-4067-9
    [3]
    Qu Yuxuan, Wang Bin, Hu Shigang, et al. Analysis and design of resistance-wire heater in MOCVD reactor[J]. J. Central South Univ., 2014, 21(9):3518-3524. doi: 10.1007/s11771-014-2331-7
    [4]
    徐龙权, 方颂, 唐子涵, 等. MOCVD反应室温度均匀性的研究[J].发光学报, 2017, 38(2):220-225. http://d.old.wanfangdata.com.cn/Periodical/fgxb201702015

    Xu longquan, Fang Song, Tang Zihan, et al. Research on heating uniformity of MOCVD heating device[J]. Chinese Journal of Luminescence, 2017, 38(2):220-225. http://d.old.wanfangdata.com.cn/Periodical/fgxb201702015
    [5]
    Brunner F, Knauer A, Schenk T, et al. Quantitative analysis of in situ wafer bowing measurements for Ⅲ-nitride growth on sapphire[J]. Journal of Crystal Growth, 2008, 310(10):2432-2438. doi: 10.1016/j.jcrysgro.2008.01.024
    [6]
    杨超普, 方文卿.气氛及压强对MOCVD红外测温的影响[J].商洛学院学报, 2015, 29(4):41-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=665383287

    Yang Chaopu, Fang Wenqing. Influence of atmosphere and pressures on infrared temperature measurement of MOCVD reactor[J]. Journal of Shangluo University, 2015, 29(4):41-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=665383287
    [7]
    杨超普, 方文卿, 刘明宝, 等. MOCVD原位红外测温方法的比较研究[J].应用光学, 2016, 2(37):297-302. http://d.old.wanfangdata.com.cn/Periodical/yygx201602026

    Yang Chaopu, Fang Wenqing, Liu Mingbao, et al. Comparative study on in situ infrared thermometry methods of MOCVD[J]. Journal of Applied Optics, 2016, 37 (2):297- 302. http://d.old.wanfangdata.com.cn/Periodical/yygx201602026
    [8]
    陶伟, 吴国俊, 关云天.比色测温在陶瓷生产中的应用研究[J].应用光学, 2012, 33(5):940-943. http://d.old.wanfangdata.com.cn/Periodical/yygx201205022

    Tao Wei, Wu Guojun, Guan Yuntian. Chromatic thermometry used in ceramic sintering process[J]. Journal of Applied Optics, 2012, 33(5):940-943. http://d.old.wanfangdata.com.cn/Periodical/yygx201205022
  • Related Articles

    [1]TAN Ligang, WEI Meiting, LI Jie, LUO Mingwei. Design and simulation of 0.2 μm~20 μm ultra-wide spectrum metamaterial absorption structure[J]. Journal of Applied Optics, 2024, 45(5): 903-915. DOI: 10.5768/JAO202445.0501004
    [2]ZHAO Ming, WANG Tianshu. Wide spectrum Yb-doped Figure-9 fiber laser cavity based on dispersion compensation[J]. Journal of Applied Optics, 2024, 45(4): 834-840. DOI: 10.5768/JAO202445.0407001
    [3]WU Yuting, LIN Zhiqiang, WANG Min. Design of 15 mm~300 mm wide-spectrum zoom optical system[J]. Journal of Applied Optics, 2023, 44(3): 491-499. DOI: 10.5768/JAO202344.0301004
    [4]SI Changtian, YANG Lei, GUO Chengxiang, SHI Tianyi, XIE Hongbo. Ultraviolet relay optical system with wide spectrum based on diffractive elements[J]. Journal of Applied Optics, 2023, 44(3): 476-483. DOI: 10.5768/JAO202344.0301002
    [5]LUO Rui, LIANG Xiuling. Design of large-aperture and wide-spectrum zoom lens[J]. Journal of Applied Optics, 2022, 43(5): 839-845. DOI: 10.5768/JAO202243.0501002
    [6]YE Jingfei, ZHU Runhui, MA Mengcong, DING Tianyu, SONG Zhenzhen, CAO Zhaolou. Design of UV optical system with wide ultraviolet spectrum and large relative aperture[J]. Journal of Applied Optics, 2021, 42(5): 761-766. DOI: 10.5768/JAO202142.0501001
    [7]CHEN Jiao, JIAO Ming-yin, CHANG Wei-jun, KANG Wen-li. Optical design of microscopic imaging system for ultraviolet-visiblewide spectrum[J]. Journal of Applied Optics, 2011, 32(2): 195-199.
    [8]WANG Mei-qin, WANG Zhong-hou, BAI Jia-guang. Removing secondary spectrum in wide spectrum optical system[J]. Journal of Applied Optics, 2010, 31(3): 360-364.
    [9]GUO Cheng, WANG Gao-ming, ZHANG Liang-liang, YANG Zhi-wen. Design of wide spectrum low-light-level collimating lens[J]. Journal of Applied Optics, 2009, 30(2): 199-201.
    [10]TAN Yu, ZHAO Xing-mei. Coating of Beamsplitting Film System Working in aUltra Wide Spectral Range[J]. Journal of Applied Optics, 2005, 26(4): 53-55.
  • Cited by

    Periodical cited type(21)

    1. 赵涵卓,丁宇航,张宗华,王晨,张昂,孟召宗,肖艳军,高楠. 条纹投影测量系统标定方法研究. 河北工业大学学报. 2023(03): 17-28 .
    2. 王红平,刘鑫,赵世辰,王宇,王磊. 基于缺失点云的飞机表面锪孔质量检测. 光子学报. 2022(12): 203-215 .
    3. 李辰,刘建明,何晴. 一种基于连续相位优化的三维形貌测量方法. 现代电子技术. 2021(05): 61-65 .
    4. 胥劲,张启灿,薛俊鹏,刘元坤. 手机屏显靶标用于标定小视场双目三维测量系统. 光学与光电技术. 2021(02): 55-63 .
    5. 何景宜,高允珂,刘姗,孙长森. 检测印刷电路板组件的光栅投影镜头设计. 光学与光电技术. 2021(03): 108-114 .
    6. 刘洋,潘娅,罗玉琴. 一种逐周期条纹背景自适应去除算法. 计算机测量与控制. 2021(11): 148-153 .
    7. 冯维,汤少靖,赵晓冬,赵大兴. 基于自适应条纹的高反光表面三维面形测量方法. 光学学报. 2020(05): 119-127 .
    8. 李承杭,薛俊鹏,郎威,张启灿. 基于相位映射的双目视觉缺失点云插补方法. 光学学报. 2020(01): 260-269 .
    9. 王晨,张宗华,丁宇航,赵涵卓,张昂,孟召宗,肖艳军,高楠. 基于立体标靶的双目系统标定研究. 光学技术. 2020(03): 322-329 .
    10. 张娟娟,沈小渝. 基于三维投影矩阵的生产流水线对接系统平台构建. 食品与机械. 2019(10): 65-69+74 .
    11. 陈诚,张宏儒,陈少轩,刘冰,张凯. 直线运动机构三维角误差同步测量方法研究. 仪器仪表学报. 2019(10): 145-151 .
    12. 王柳,陈超,高楠,张宗华. 基于自适应条纹投影的高反光物体三维面形测量. 应用光学. 2018(03): 373-378 . 本站查看
    13. 顾超,穆平安. 基于面结构光的双目立体匹配算法研究. 电子科技. 2017(01): 16-18+22 .
    14. 胡天正,侯少博. 石窟建筑三维数字图像形貌拼接方法优化仿真. 计算机仿真. 2017(12): 250-253+330 .
    15. 王静强,刘桂华,赵碧霞,王玉玫. 基于伪随机阵列和正弦光栅的结构光标定. 计算机应用与软件. 2017(12): 116-121 .
    16. 张西宁,张海星,吴婷婷. 一种转动容器中磁流体液表面形貌测量方法. 西安交通大学学报. 2017(01): 103-108 .
    17. 蒋艳鹏,吴思进,杨连祥. 形貌与微变形全场光学同时测量方法. 应用光学. 2017(01): 67-71 . 本站查看
    18. 曾灼环,黄超,屈国丽,伏燕军. 基于二进制条纹加相位编码条纹离焦投影的三维测量方法. 应用光学. 2017(05): 790-797 . 本站查看
    19. 王一,刘会艳,宋宝根. 平行光干涉投影三维形貌恢复方法. 应用光学. 2017(05): 798-803 . 本站查看
    20. 丁一飞,王永红,胡悦,黄安琪,但西佐. 样本块匹配光栅投影阶梯标定方法. 中国测试. 2016(08): 7-12 .
    21. 张湧涛,王祎泽,王一,宋志伟. 电光材料调制误差对平行光束干涉投影的影响. 应用光学. 2016(02): 235-239 . 本站查看

    Other cited types(24)

Catalog

    Article views (1021) PDF downloads (59) Cited by(45)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return