Wang Dong, Wu Jianguang, Wang Bin, Huang Xianshan. Analysis of mode field distribution for fundamental and second harmonic light waves in nonlinear optical waveguide[J]. Journal of Applied Optics, 2017, 38(2): 231-236. DOI: 10.5768/JAO201738.0202005
Citation: Wang Dong, Wu Jianguang, Wang Bin, Huang Xianshan. Analysis of mode field distribution for fundamental and second harmonic light waves in nonlinear optical waveguide[J]. Journal of Applied Optics, 2017, 38(2): 231-236. DOI: 10.5768/JAO201738.0202005

Analysis of mode field distribution for fundamental and second harmonic light waves in nonlinear optical waveguide

More Information
  • Received Date: August 07, 2016
  • Revised Date: October 24, 2016
  • Nonlinear waveguide is an important photon quantum device. Using Marcatili approximation, mode field distribution characteristics of waveguide can be approximately described. For periodically poled LiNbO3 waveguide with ee-e quasi-phase matching, fundamental mode field distribution of fundamental wave with a wavelength of 1 064 nm and second harmonic of 532 nm is analyzed. Results show that if waveguide is an embedded square waveguide, fundamental and second harmonic are basically circular, and range of fundamental wave field is larger. When length of square side of section is 5 μm and core area is slightly 0.02 higher than cladding refractive index, waveguide can basically confine two kinds of light field in core region, but constraint ability becomes very poor when waveguide length is 0.5 μm. If difference between core region and cladding layer is large, waveguide with 0.5 μm side length can get two kinds of field distribution constrained in core area basically. Results are of significance to analysis of modes of other types of nonlinear waveguides.
  • [1]
    Saglamyurek E, Sinclair N, Jin J, et al. Broadband waveguide quantum memory for entangled photons[J]. Nature, 2011, 469(7331):512-515. doi: 10.1038/nature09719
    [2]
    张长命, 刘永智, 戴基智, 等.高速光学模数转换器的分析[J].应用光学, 2005, 26(3):50-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx200503013

    Zhang Changming, Liu Yongzhi, Dai Jizhi, et al. Analysis of high-speed optical waveguide analog-to-digital converter [J]. Journal of Applied Optics, 2005, 26(3):50-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx200503013
    [3]
    Leng H Y, Yu X Q, Gong Y X, et al. On-chip steering of entangled photons in nonlinear photonic crystals[J]. Nature Communications, 2011(2): 429. http://cn.bing.com/academic/profile?id=d760493a94708162590946bb94ae080f&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    Tu C H, Huang Z C, Lou K, et al. Efficient green-light generation by frequency doubling of a picosecond all-fiber ytterbium-doped fiber amplifier in PPKTP waveguide inscribed by femtosecond laser direct writing[J]. Optics Express, 2010, 18(24): 25183-25191. doi: 10.1364/OE.18.025183
    [5]
    Lee K J, Parmigiani F, Liu S, et al. Phase sensitive amplification based on quadratic cascading in a periodically poled lithium niobate waveguide[J]. Optics Express, 2009, 17(22):20393-20400. doi: 10.1364/OE.17.020393
    [6]
    Umeki T, Tadanaga O, Takada A, et al. Phase sensitive degenerate parametric amplification using directly-bonded PPLN ridge waveguides[J]. Optics Express, 2011, 19(7): 6326-6332. doi: 10.1364/OE.19.006326
    [7]
    Fiorentino M, Spillane S M, Beausoleil R G, et al. Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals [J]. Optics Express, 2007, 15(12): 7479-7488. doi: 10.1364/OE.15.007479
    [8]
    Eckstein A, Silberhorn C. Broadband frequency mode entanglement in waveguided parametric downconversion[J]. Optics Letters, 2008, 33(16):1825-1827. doi: 10.1364/OL.33.001825
    [9]
    Levine Z H, Fan J, Chen J, et al. Heralded, pure-state single-photon source based on a potassium titanyl phosphate waveguide[J]. Optics Express, 2010, 18(4): 3708-3718. doi: 10.1364/OE.18.003708
    [10]
    Zhong T, Wong F N, Roberts T D, et al. High-quality fiber-optic polarization entanglement distribution at 1.3 μm telecom wavelength[J]. Optics Letters, 2010, 35(9):1392-1394. doi: 10.1364/OL.35.001392
    [11]
    Zhong T, Wong F N, Roberts T D, et al. High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide[J]. Optics Express, 2009, 17(14): 12019-12030. doi: 10.1364/OE.17.012019
    [12]
    Pysher M, Bloomer R, Kaleva C M, et al. Broadband amplitude squeezing in a periodically poled KTiOPO4 waveguide[J]. Optics Letters, 2009, 34(3):256-258. doi: 10.1364/OL.34.000256
    [13]
    任建国, 胡正良, 杨华勇, 等.锥形光纤模场直径极小值特征研究[J].应用光学, 2012, 33(3):638-642. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx201203038

    Ren Jianguo, Hu Zhengliang, Yang Huayong, et al. Characteristics of minimum mode-field diameter in tapered fiber[J]. Journal of Applied Optics, 2012, 33(3):638-642. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx201203038
    [14]
    佘守宪.导波光学物理基础[M].北京:北京交通大学出版社, 2002.

    She Shouxian. Physical basis for wave guiding optics [M]. Beijing: Beijing Jiaotong University Press, 2002.
    [15]
    Marcatili E A J. Dielectric rectangular waveguide and directional coupler for integrated optics[J]. The Bell System Technical Journal, 1969, 48:2071-2102. doi: 10.1002/j.1538-7305.1969.tb01166.x
    [16]
    Zelmon D E, Small D L, Jundt D. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide doped lithium niobate[J]. Journal of the Optical Society of America B, 1997, 14(12):3319-3322. doi: 10.1364/JOSAB.14.003319
    [17]
    Spillane S M, Fiorentino M, Beausoleil R G. Spontaneous parametric down conversion in a nanophotonic waveguide[J]. Optics Express, 2007, 15(14): 8770-8780. doi: 10.1364/OE.15.008770

Catalog

    Article views (983) PDF downloads (72) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return