Jiang Youhua, Fu Haiwei, Ding Jijun, Zhang Jingle, Qiao Xueguang. Tapered optical fiber Mach-Zehnder interferometer humidity sensor based on evanescent wave[J]. Journal of Applied Optics, 2017, 38(1): 140-146. DOI: 10.5768/JAO201738.0108001
Citation: Jiang Youhua, Fu Haiwei, Ding Jijun, Zhang Jingle, Qiao Xueguang. Tapered optical fiber Mach-Zehnder interferometer humidity sensor based on evanescent wave[J]. Journal of Applied Optics, 2017, 38(1): 140-146. DOI: 10.5768/JAO201738.0108001

Tapered optical fiber Mach-Zehnder interferometer humidity sensor based on evanescent wave

More Information
  • Received Date: June 29, 2016
  • Revised Date: September 18, 2016
  • According to the principle of evanescent wave, a humidity sensor based on optics in-fiber Mach-Zehnder interferometer was proposed by using the standard single mode fiber with two waist-enlarged bitapers, and the center of sensing arm was tapered by adiabatic flam-heated fiber tapering machine. The light propagates from the input end of the sensor, the first bitaper excites a number of higher-order modes, each mode transmits through tapered fiber and into the second bitaper, which can be coupled into the output fiber of the sensor. The change of the humidity can lead to the evanescent field of the tapered fiber changing, eventually causes the energy of the transmission spectrum energy to change. The environment humidity sensing measurement can be realized through measuring the variation of transmission spectrum energy. The experimental results show that within the humidity changing scope of 35%~85%, the energies of the transmission spectra have the same variation trend, a valley of interference spectrum near the water vapor absorption peak has the highest sensitivity of 0.157 dBm/%RH, the temperature cross-sensitivity is as low as 0.014 %RH/ ℃. This humidity sensor is advantaged by easy manufacturing, high sensitivity and immunity of temperature cross-sensitivity, it have a great application prospect.
  • [1]
    Miao Y P. Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating[J]. IEEE Photon. Technol. Lett., 2009, 21(7): 441-443. doi: 10.1109/LPT.2009.2013185
    [2]
    Li T, Dong X, Chang C. Humidity sensor based on multimode-fiber taper coated with polyvinyl alcohol interacting with a fiber Bragg grating[J]. IEEE Sensors Journal, 2012, 12(22): 05-08. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=acd2262401e6c057899f029dbbdf0348
    [3]
    向光华, 忽满利, 乔学光, 等.基于聚酰亚胺材料的FBG湿度传感特性研究[J].光电子·激光, 2012, 23(1): 41-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjg201201008

    Xiang Guanghua, Hu Manli, Qiao Xueguang, et al. Study on characteristics of FBG humidity sensor based on polyimide[J]. Journal of Optoelectronics·Laser, 2012, 23(1): 41-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjg201201008
    [4]
    周怡妃, 梁大开, 曾捷, 等.基于PI湿敏薄膜的分布式光纤Bra光栅湿度传感器[J].光电子·激光, 2011, 22(11): 1597-1601. https://www.ixueshu.com/document/0c25ea62490640e5f50763e5b379f92b318947a18e7f9386.html

    Zhou Yifei, Liang Dakai, Zeng Jie, et al. Research on relative humidity sensor based on distribute optical fiber Bragg grating coated with polyimide moisture sensitive film[J]. Journal of Optoelectronics ·Laser, 2011, 22(11): 1597-1601. https://www.ixueshu.com/document/0c25ea62490640e5f50763e5b379f92b318947a18e7f9386.html
    [5]
    Khay M T, Chia M T, Swee C T, et al. High relative humidity measurements using gelatin coated long-period grating sensors[J]. Sensors and Actuators B, 2005, 110(2): 335-341. doi: 10.1016/j.snb.2005.02.012
    [6]
    Xie W J, Yang M H, Cheng Y, et al. Optical fiber relative-humidity sensor with evaporated dielectric coatings on fiber end-face[J]. Optical Fiber Technology, 2014, 20(4): 314-319. doi: 10.1016/j.yofte.2014.03.008
    [7]
    Su D, Qiao X G, Rong Q Z, et al. A fiber Fabry-Perot interferometer based on a PVA coating for humidity measurement[J]. Optics Communications, 2013, 311: 107-110. doi: 10.1016/j.optcom.2013.08.016
    [8]
    Sun H, Zhang X L, Yuan L T, et al. An optical fiber Fabry-Perot interferometer sensor for simultaneous measurement of relative humidity and temperature[J]. IEEE Sensors Journal, 2015, 15(5): 2891-2897. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b223eadd9a1a67b0fbec9df35132f0e7
    [9]
    Lokman A, Arof H, Harun S W, et al. Optical fiber relative humidity sensor based on inline mach zehnder interferometer with ZnO nanowires coating[J]. IEEE Sensors Journal, 2016, 12(2): 312-316. http://cn.bing.com/academic/profile?id=695c010d02c16050afc08b15122d1c20&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    Shao M, Qiao X G, Fu H W, et al. A Mach-Zehnder interferometric humidity sensor based on waist-enlarged tapers[J]. Optics and Lasers in Engineering, 2014, 52: 86-90. doi: 10.1016/j.optlaseng.2013.07.023
    [11]
    Hu P B, Dong X Y, Ni K, et al. Sensitivity-enhanced Michelson interferometric humidity sensor with waist-enlarged fiber bitaper[J]. Sensors and Actuators B, 2014, 194: 180-184. doi: 10.1016/j.snb.2013.12.081
    [12]
    Xu L, Fanguy J C, Soni K. Optical fiber humidity sensor based on evanescent-wave scattering[J]. Optics Letters, 2004, 29(11): 1191-1193. doi: 10.1364/OL.29.001191
    [13]
    Batumalay M, Harun S W, Ahmad F, et al. Study of a fiber optic humidity sensor based on agarose gel[J]. Journal of Modern Optics, 2014, 61(3):244-248. doi: 10.1080/09500340.2013.879937
    [14]
    Batumalay M, Harun S W, Irawati N, et al. A study of relative humidity fiber-optic sensors[J]. IEEE Sensors Journal, 2014, 15(3): 1945-1950. http://cn.bing.com/academic/profile?id=f944ed408dbc6924bc87f9e183e8d4e4&encoded=0&v=paper_preview&mkt=zh-cn
    [15]
    Harith Z, Irawati N, Ahmad R H, et al. Tapered plastic optical fiber coated with Al-doped ZnO nanostructures for detecting relative humidity[J]. IEEE Sensors Journal, 2014, 15(2): 845-849. http://cn.bing.com/academic/profile?id=99b95ceb2318fe101bba0ea091a5ad81&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    毕卫红, 朱长青, 付兴虎, 等.基于聚乙烯醇-铝薄膜的光纤温湿度传感器研究[J].光电子·激光, 2014, 25(8): 1443-1448. http://www.cnki.com.cn/Article/CJFDTotal-GDZJ201408001.htm

    Bi Weihong, Zhu Changqing, Fu Xinhu, et al. Optical fiber temperature and humidity sensor based on polyvinyl alcohol-aluminum film[J]. Journal of Optoelectronics·Laser, 2014, 25(8): 1443-1448. http://www.cnki.com.cn/Article/CJFDTotal-GDZJ201408001.htm
    [17]
    肖毅, 张军, 蔡祥, 等.基于石墨烯的光纤湿度传感研究[J].光学学报, 2015, 35(4): 1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201504010

    Xiao Yi, Zhang Jun, Cai Xiang, et al. Fiber-optic humidity sensing based on graphene[J]. Acta Optica Sinica, 2015, 35(4): 1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201504010
    [18]
    王廷云, 陈振宜, 沈育青.单模光纤渐逝波传输分析[J].光电子·激光, 2003, 14(2): 136-139. doi: 10.3321/j.issn:1005-0086.2003.02.007

    Wang Tingyun, Chen Zhenyi, Shen Yuqing. Analysis of evanescent wave transmission on Single-mode optical fibers[J]. Journal of Optoelectronics·Laser, 2003, 14(2): 136-139. doi: 10.3321/j.issn:1005-0086.2003.02.007
    [19]
    李辉栋, 傅海威, 邵敏, 等.基于光纤气泡和纤芯失配的Mach-Zehnder干涉液体折射率传感器[J].物理学报, 2013, 62(21): 214209. doi: 10.7498/aps.62.214209

    Li Huidong, Fu Haiwei, Shao Min, et al. In-fiber Mach-Zehnder interferometer based on fiber core etched air-bubble and core diameter mismatch for liquid refractive index sensing[J]. Acta Physica Sinica, 2013, 62(21): 214209. doi: 10.7498/aps.62.214209
  • Related Articles

    [1]TAN Ligang, LUO Mingwei, LI Jie. Wide-band terahertz absorbing structure with graphene based on dual-scale four separation layers optimization[J]. Journal of Applied Optics, 2023, 44(1): 6-16. DOI: 10.5768/JAO202344.0101002
    [2]ZHANG Bohan, YANG Jun, XIE Xingjuan, JIANG Yanhuan. CO2 positive pressure measurement technology based on absorption spectroscopy[J]. Journal of Applied Optics, 2022, 43(1): 106-110. DOI: 10.5768/JAO202243.0103006
    [3]LIU Feng, GALLAIS Laurent. Absorptance measurement on Nb2O5 coating with lock-in thermography method[J]. Journal of Applied Optics, 2020, 41(3): 441-446. DOI: 10.5768/JAO202041.0301002
    [4]Gao Aihua, Wang Shaogang, Yan Lirong. Highprecision laser absorption rate measuring device[J]. Journal of Applied Optics, 2016, 37(2): 303-307. DOI: 10.5768/JAO201637.0207001
    [5]Liu hao, Pan feng, Wei Yao-wei, Ma ping, Zhang Zhe, Zhang Qing-hua, Wu Qian. Influence of defects in HfO2 film on absorptance and LIDT measurements[J]. Journal of Applied Optics, 2015, 36(2): 314-320. DOI: 10.5768/JAO201536.0207004
    [6]LIU Hao, PAN Feng, CHEN Song-lin, WANG Zhen, MA Ping, OUYANG Sheng, WEI Yao-wei. Measurement for bulk and surface absorptances of K9 substrates with laser calorimeter[J]. Journal of Applied Optics, 2014, 35(2): 292-296.
    [7]MA Hai-xia. Absorption efficiency of double-clad fiber based on Zemax[J]. Journal of Applied Optics, 2013, 34(1): 182-187.
    [8]WANG Yue, LIU Wei-guo, GAO Ai-hua, SUN Xin. System for testing transmissivity uniformity of high-absorption filter[J]. Journal of Applied Optics, 2010, 31(2): 256-260.
    [9]LI De-chuan, WANG Ming-jian, FANG Xiang-yun, LI Jian. Reverse saturable absorption property of organic material[J]. Journal of Applied Optics, 2009, 30(1): 172-176.
    [10]CHEN Jun, ZHANG Qun-li, YAO Jian-hua, FU Ji-bin. Study on laser absorptivity of metal material[J]. Journal of Applied Optics, 2008, 29(5): 793-798.

Catalog

    Article views (834) PDF downloads (81) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return