Lu Xiaotian, Yang Tianming, Jin Weiqi, Liu Jing, Wen Renjie. Correction methods for water fluctuation and underwater turbulence degraded imaging[J]. Journal of Applied Optics, 2017, 38(1): 42-55. DOI: 10.5768/JAO201738.0102002
Citation: Lu Xiaotian, Yang Tianming, Jin Weiqi, Liu Jing, Wen Renjie. Correction methods for water fluctuation and underwater turbulence degraded imaging[J]. Journal of Applied Optics, 2017, 38(1): 42-55. DOI: 10.5768/JAO201738.0102002

Correction methods for water fluctuation and underwater turbulence degraded imaging

More Information
  • Received Date: September 18, 2016
  • Revised Date: November 15, 2016
  • Underwater image suffers from distortions and blurs due to water fluctuations and underwater turbulence that restricts the development of underwater surveillance, underwater target alert in the air, maritime search severely. The realization of distortion and turbulence correction has great significance. Most recent developments for the degraded image by water fluctuations and underwater turbulence are reviewed in this paper, and four methods and typical image restoration results based on lucky patch, image registration, water-waveestimation and image degradation model are summarized accordingly. Further research directions for restoring underwater degraded image are analyzed at the end of the paper.
  • [1]
    Efros A, Isler V, Shi J, et al. Seeing through water[J]. Advances in Neural Information Processing Systems, 2005, 17: 393-400. http://d.old.wanfangdata.com.cn/Periodical/zgmtjjxyxb200704024
    [2]
    Fried D L. Probability of getting a lucky short-exposure image through turbulence[J]. JOSA, 1978, 68(12): 1651-1657. doi: 10.1364/JOSA.68.001651
    [3]
    Kanaev A V, Hou W, Woods S. Multi-frame underwater image restoration[C]//SPIE Security Defence. New York: International Society for Optics and Photonics, 2011: 81850O-81850O-8. doi: 10.1117/12.898914.short?SSO=1
    [4]
    Kanaev A V, Hou W, Woods S, et al. Restoration of turbulence degraded underwater images[J]. Optical Engineering, 2012, 51(5): 057007-1-057007-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1e3cb3cb0fe0d1653c18e6dadbd8872b
    [5]
    Kanaev A V, Hou W, Restaino S R, et al. Correction methods for underwater turbulence degraded imaging[C]//SPIE Remote Sensing. New York: International Society for Optics and Photonics, 2014: 92421P-92421P-9. doi: 10.1117/12.2066479.short
    [6]
    Kanaev A V, Hou W, Restaino S R, et al. Restoration of images degraded by underwater turbulence using structure tensor oriented image quality (STOIQ) metric[J]. Optics Express, 2015, 23(13): 17077-17090. doi: 10.1364/OE.23.017077
    [7]
    Vorontsov M A, Carhart G W. Anisoplanatic imaging through turbulent media: image recovery by local information fusion from a set of short-exposure images[J]. JOSA A, 2001, 18(6): 1312-1324. doi: 10.1364/JOSAA.18.001312
    [8]
    Oreifej O, Shu G, Pace T, et al. A two-stage reconstruction approach for seeing through water[C]//Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. New York: IEEE, 2011: 1153-1160. https: //www.researchgate.net/publication/224254791_A_Two-Stage_Reconstruction_Approach_for_Seeing_Through_Water
    [9]
    Rueckert D, Sonoda L I, Hayes C, et al. Nonrigid registration using free-form deformations: application to breast MR images[J]. Medical Imaging, IEEE Transactions on, 1999, 18(8): 712-721. doi: 10.1109/42.796284
    [10]
    李雄飞, 张存利, 李鸿鹏, 等.医学图像配准技术进展[J].计算机科学, 2010, 37(7): 27-33. doi: 10.3969/j.issn.1002-137X.2010.07.006

    Li Xiongfei, Zhang Cunli, Li Hongpeng, et al. Development of medical image registration technology[J]. Computer Science, 2010, 37(7): 27-33. doi: 10.3969/j.issn.1002-137X.2010.07.006
    [11]
    王伟, 苏志勋.基于移动最小二乘法的医学图像配准[J].计算机科学, 2010, 37(9): 270-271. doi: 10.3969/j.issn.1002-137X.2010.09.067

    Wang Wei, Su Zhixun. Medical image registration based on moving least squares[J]. Computer Science, 2010, 37(9): 270-271. doi: 10.3969/j.issn.1002-137X.2010.09.067
    [12]
    李磊, 王庆, 肖照林.一种基于视频的水下场景复原算法[J].系统仿真学报, 2012, 24(1):188-191. http://d.old.wanfangdata.com.cn/Conference/7571365

    Li Lei, Wang Qing, Xiao Zhaolin. Underwanter image restoration algorithm from distorted video[J]. Journal of System Simulation, 2012, 24(1):188-191. http://d.old.wanfangdata.com.cn/Conference/7571365
    [13]
    Donate A, Ribeiro E. Advances in computer graphics and computer vision[M]. Berlin: Springer Berlin Heidelberg, 2007: 264-277.
    [14]
    张志强.一种对扭曲景象序列三维重建迭代方法[J].软件, 2013, 34(10): 100-105. doi: 10.3969/j.issn.1003-6970.2013.10.035

    Zhang Zhiqiang. A method to perform 3D reconstruction on distorted image serie[J]. Software, 2013, 34(10): 100-105. doi: 10.3969/j.issn.1003-6970.2013.10.035
    [15]
    Yang B, Zhang W, Xie Y, et al. Distorted image restoration via non-rigid registration and lucky-region fusion approach[C]//Information Science and Technology (ICIST), 2013 International Conference on. New York: IEEE, 2013: 414-418. https: //www.researchgate.net/publication/283486917_Distorted_image_restoration_via_non-rigid_registration_and_lucky-region_fusion_approach
    [16]
    杨波, 张文生, 谢源.畸变环境下的序列图像融合技术研究[J].计算机科学, 2013, 40(10): 261-264. doi: 10.3969/j.issn.1002-137X.2013.10.055

    Yang Bo, Zhang Wensheng, Xie Yuan. Research on distortion-free fusion of sequence images[J]. Computer Science, 2013, 40(10): 261-264. doi: 10.3969/j.issn.1002-137X.2013.10.055
    [17]
    Halder K K, Tahtali M, Anavatti S G. High accuracy image restoration method for seeing through water[C]//SPIE Optical Engineering Applications. New York: International Society for Optics and Photonics, 2014: 921702-921702-6. https: //www.researchgate.net/publication/269098153_High_Accuracy_Image_Restoration_Method_for_Seeing_through_Water
    [18]
    Hua W, Xiea Y, Zhanga W, et al. Removing water fluctuation via motion field-based Kernel regression?[J]. Journal of Information & Computational Science, 2014, 11(15):5289-5296. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0235032165/
    [19]
    Tian Y, Narasimhan S G. Seeing through water: Image restoration using model-based tracking[C]//Computer Vision, 2009 IEEE 12th International Conference on. New York: IEEE, 2009: 2303-2310. https: //www.researchgate.net/publication/224136114_Seeing_through_water_Image_restoration_using_model-based_tracking
    [20]
    Tian Y, Narasimhan S G. A globally optimal data-driven approach for image distortion estimation[C]//Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. New York: IEEE, 2010: 1277-1284. https: //www.researchgate.net/publication/221361890_A_Globally_Optimal_Data-Driven_Approach_for_Image_Distortion_Estimation
    [21]
    Tian Y, Narasimhan S G. Globally optimal estimation of nonrigid image distortion[J]. International Journal of Computer Vision, 2012, 98(3): 279-302. doi: 10.1007/s11263-011-0509-0
    [22]
    Wen Z, Lambert A, Fraser D, et al. Bispectral analysis and recovery of images distorted by a moving water surface[J]. Applied Optics, 2010, 49(33): 6376-6384. doi: 10.1364/AO.49.006376
    [23]
    Halder K K, Tahtali M, Anavatti S G. Artificial intelligence: methods and applications[M]. Berlin: Springer International Publishing, 2014: 384-394.
    [24]
    Zhang M, Lin X, Gupta M, et al. Computer vision-ECCV 2014[M]. Berlin: Springer International Publishing, 2014: 234-250.
    [25]
    Seemakurthy K, Rajagopalan A N. Deskewing of underwater images[J]. Image Processing, IEEE Transactions on, 2015, 24(3): 1046-1059. doi: 10.1109/TIP.2015.2395814
    [26]
    McGlamery B L. A computer model for underwater camera systems[J]. SPIE Ocean Optics, 1979, 208: 221-231. https://www.researchgate.net/publication/244953801_A_Computer_Model_For_Underwater_Camera_Systems
    [27]
    Jaffe J S.Computer modeling and the design of optimal underwaterimagingsystems[J]. IEEE Journal of Oceanic Engineering, 1990, 15(2): 101-111. doi: 10.1109/48.50695
    [28]
    Trucco E, Olmos-Antillon A T. Self-tuning underwater image restoration[J]. IEEE Journal of Oceanic Engineering, 2006, 31(2): 511-519. doi: 10.1109/JOE.2004.836395
    [29]
    Sanchez-Ferreira C, Ayala H V H, Coelho L S. Multi-objective differential evolution algorithm for underwater image restoration[C]//2015 IEEE Congress on Evolutionary Computation. New York: IEEE, 2015: 243-250 https: //www.researchgate.net/publication/301287353_Multi-objective_differential_evolution_algorithm_for_underwater_image_restoration
    [30]
    Hou W, Weidemann A D. Objectively assessing underwater image quality for the purpose of automated restoration[C]//Defense and Security Symposium. New York: International Society for Optics and Photonics, 2007: 65750Q-65750Q-7. https: //www.researchgate.net/publication/235125922_Objectively_Assessing_Underwater_Image_Quality_for_the_Purpose_of_Automated_Restoration
    [31]
    Hou W, Woods S, Goode W, et al. Impacts of optical turbulence on underwater imaging[C]//SPIE Defense, Security, and Sensing. New York: International Society for Optics and Photonics, 2011: 803009-803009-7. https: //www.researchgate.net/publication/253507134_Impacts_of_optical_turbulence_on_underwater_imaging
    [32]
    Hou W W. A simple underwater imaging model[J]. Optics Letters, 2009, 34(17): 2688-2690. doi: 10.1364/OL.34.002688
    [33]
    Hou W, Woods S, Jarosz E, et al. Optical turbulence on underwater image degradation in natural environments[J]. Applied Optics, 2012, 51(14): 2678-2686. doi: 10.1364/AO.51.002678
    [34]
    Hou W, Goode W, Kanaev A. Underwater image quality degradation by scattering[C]//OCEANS, 2012-Yeosu. New York: IEEE, 2012: 1-5. https: //ieeexplore.ieee.org/document/6263409
    [35]
    Sun D, Roth S, Black M J. Secrets of optical flow estimation and their principles[C]//Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. New York: IEEE, 2010: 2432-2439. https: //www.researchgate.net/publication/221364345_Secrets_of_Optical_Flow_Estimation_and_Their_Principles
    [36]
    Brox T, Bruhn A, Papenberg N, et al. High accuracy optical flow estimation based on a theory for warping[C]//European Conference on Computer Vision. Berlin: Springer Berlin Heidelberg, 2004: 25-36. doi: 10.1007%2F978-3-540-24673-2_3
    [37]
    Lin Z, Chen M, Ma Y. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[J/OL]. arXiv, 2010, 1009:5055. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1009.5055
    [38]
    Rueckert D, Sonoda L I, Hayes C, et al. Nonrigid registration using free-form deformations: application to breast MR images[J]. IEEE Transactions on Medical Imaging, 1999, 18(8): 712-721. doi: 10.1109/42.796284
  • Related Articles

    [1]HE Qing, ZHANG Zhenglin, KANG Yaojun. Structural optimization design of LED railway signal lens based on free-form surface[J]. Journal of Applied Optics, 2025, 46(1): 80-88. DOI: 10.5768/JAO202546.0101007
    [2]YAO Hongbing, WANG Xuanqi, XIN Zhonghua. Optical design of automobile headlamp based on ADB[J]. Journal of Applied Optics, 2019, 40(4): 663-668. DOI: 10.5768/JAO201940.0405001
    [3]Yao Hongbing, Wang Dandan, Xin Zhonghua, Xu Jin, Liu Min. Optical design of 3 independent freeform surface LEDs automotive dipped headlamp[J]. Journal of Applied Optics, 2016, 37(3): 435-440. DOI: 10.5768/JAO201637.0305001
    [4]BAI Ying, LIN Wen-shuo, XIE Guo-qing. Light distribution design of LED lamps in classroom based on compound parabolic collector[J]. Journal of Applied Optics, 2014, 35(3): 395-399.
    [5]FAN Lu-qing, LI Xiang-ning, WANG Yu, LIU Jie. TIR collimating lens design based on freeform surface[J]. Journal of Applied Optics, 2013, 34(2): 325-329.
    [6]QIAO Qing-fei, LIN Feng. Freeform surface secondary lens for LED streetlight[J]. Journal of Applied Optics, 2012, 33(4): 675-679.
    [7]KAN Zi-xiong, WAN Qiao-bin, REN Hao, CHEN Zhen-qiang. Simulation and analysis for road lighting with LED luminaries[J]. Journal of Applied Optics, 2012, 33(2): 374-379.
    [8]SHI Yong-sheng, MAI Di, NING Lei. Realization of LED uniform lighting on different occasions[J]. Journal of Applied Optics, 2011, 32(4): 613-617.
    [9]LI Jing. Lens design for uniform illumination of rectangle area with LED[J]. Journal of Applied Optics, 2011, 32(2): 211-214.
    [10]LU Zheng, XU Tao. Selection of standard LED by luminous intensity distribution curve[J]. Journal of Applied Optics, 2008, 29(6): 926-930.
  • Cited by

    Periodical cited type(1)

    1. 胡小丽, 张伟光, 张思琪, 张三喜, 张玉伦, 王晓华. 一种导引头性能可视化评估方法. 应用光学. 2019(06): 993-997 . 本站查看

    Other cited types(0)

Catalog

    Article views (743) PDF downloads (61) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return