Lu Xiaotian, Yang Tianming, Jin Weiqi, Liu Jing, Wen Renjie. Correction methods for water fluctuation and underwater turbulence degraded imaging[J]. Journal of Applied Optics, 2017, 38(1): 42-55. DOI: 10.5768/JAO201738.0102002
Citation: Lu Xiaotian, Yang Tianming, Jin Weiqi, Liu Jing, Wen Renjie. Correction methods for water fluctuation and underwater turbulence degraded imaging[J]. Journal of Applied Optics, 2017, 38(1): 42-55. DOI: 10.5768/JAO201738.0102002

Correction methods for water fluctuation and underwater turbulence degraded imaging

More Information
  • Received Date: September 18, 2016
  • Revised Date: November 15, 2016
  • Underwater image suffers from distortions and blurs due to water fluctuations and underwater turbulence that restricts the development of underwater surveillance, underwater target alert in the air, maritime search severely. The realization of distortion and turbulence correction has great significance. Most recent developments for the degraded image by water fluctuations and underwater turbulence are reviewed in this paper, and four methods and typical image restoration results based on lucky patch, image registration, water-waveestimation and image degradation model are summarized accordingly. Further research directions for restoring underwater degraded image are analyzed at the end of the paper.
  • [1]
    Efros A, Isler V, Shi J, et al. Seeing through water[J]. Advances in Neural Information Processing Systems, 2005, 17: 393-400. http://d.old.wanfangdata.com.cn/Periodical/zgmtjjxyxb200704024
    [2]
    Fried D L. Probability of getting a lucky short-exposure image through turbulence[J]. JOSA, 1978, 68(12): 1651-1657. doi: 10.1364/JOSA.68.001651
    [3]
    Kanaev A V, Hou W, Woods S. Multi-frame underwater image restoration[C]//SPIE Security Defence. New York: International Society for Optics and Photonics, 2011: 81850O-81850O-8. doi: 10.1117/12.898914.short?SSO=1
    [4]
    Kanaev A V, Hou W, Woods S, et al. Restoration of turbulence degraded underwater images[J]. Optical Engineering, 2012, 51(5): 057007-1-057007-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1e3cb3cb0fe0d1653c18e6dadbd8872b
    [5]
    Kanaev A V, Hou W, Restaino S R, et al. Correction methods for underwater turbulence degraded imaging[C]//SPIE Remote Sensing. New York: International Society for Optics and Photonics, 2014: 92421P-92421P-9. doi: 10.1117/12.2066479.short
    [6]
    Kanaev A V, Hou W, Restaino S R, et al. Restoration of images degraded by underwater turbulence using structure tensor oriented image quality (STOIQ) metric[J]. Optics Express, 2015, 23(13): 17077-17090. doi: 10.1364/OE.23.017077
    [7]
    Vorontsov M A, Carhart G W. Anisoplanatic imaging through turbulent media: image recovery by local information fusion from a set of short-exposure images[J]. JOSA A, 2001, 18(6): 1312-1324. doi: 10.1364/JOSAA.18.001312
    [8]
    Oreifej O, Shu G, Pace T, et al. A two-stage reconstruction approach for seeing through water[C]//Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. New York: IEEE, 2011: 1153-1160. https: //www.researchgate.net/publication/224254791_A_Two-Stage_Reconstruction_Approach_for_Seeing_Through_Water
    [9]
    Rueckert D, Sonoda L I, Hayes C, et al. Nonrigid registration using free-form deformations: application to breast MR images[J]. Medical Imaging, IEEE Transactions on, 1999, 18(8): 712-721. doi: 10.1109/42.796284
    [10]
    李雄飞, 张存利, 李鸿鹏, 等.医学图像配准技术进展[J].计算机科学, 2010, 37(7): 27-33. doi: 10.3969/j.issn.1002-137X.2010.07.006

    Li Xiongfei, Zhang Cunli, Li Hongpeng, et al. Development of medical image registration technology[J]. Computer Science, 2010, 37(7): 27-33. doi: 10.3969/j.issn.1002-137X.2010.07.006
    [11]
    王伟, 苏志勋.基于移动最小二乘法的医学图像配准[J].计算机科学, 2010, 37(9): 270-271. doi: 10.3969/j.issn.1002-137X.2010.09.067

    Wang Wei, Su Zhixun. Medical image registration based on moving least squares[J]. Computer Science, 2010, 37(9): 270-271. doi: 10.3969/j.issn.1002-137X.2010.09.067
    [12]
    李磊, 王庆, 肖照林.一种基于视频的水下场景复原算法[J].系统仿真学报, 2012, 24(1):188-191. http://d.old.wanfangdata.com.cn/Conference/7571365

    Li Lei, Wang Qing, Xiao Zhaolin. Underwanter image restoration algorithm from distorted video[J]. Journal of System Simulation, 2012, 24(1):188-191. http://d.old.wanfangdata.com.cn/Conference/7571365
    [13]
    Donate A, Ribeiro E. Advances in computer graphics and computer vision[M]. Berlin: Springer Berlin Heidelberg, 2007: 264-277.
    [14]
    张志强.一种对扭曲景象序列三维重建迭代方法[J].软件, 2013, 34(10): 100-105. doi: 10.3969/j.issn.1003-6970.2013.10.035

    Zhang Zhiqiang. A method to perform 3D reconstruction on distorted image serie[J]. Software, 2013, 34(10): 100-105. doi: 10.3969/j.issn.1003-6970.2013.10.035
    [15]
    Yang B, Zhang W, Xie Y, et al. Distorted image restoration via non-rigid registration and lucky-region fusion approach[C]//Information Science and Technology (ICIST), 2013 International Conference on. New York: IEEE, 2013: 414-418. https: //www.researchgate.net/publication/283486917_Distorted_image_restoration_via_non-rigid_registration_and_lucky-region_fusion_approach
    [16]
    杨波, 张文生, 谢源.畸变环境下的序列图像融合技术研究[J].计算机科学, 2013, 40(10): 261-264. doi: 10.3969/j.issn.1002-137X.2013.10.055

    Yang Bo, Zhang Wensheng, Xie Yuan. Research on distortion-free fusion of sequence images[J]. Computer Science, 2013, 40(10): 261-264. doi: 10.3969/j.issn.1002-137X.2013.10.055
    [17]
    Halder K K, Tahtali M, Anavatti S G. High accuracy image restoration method for seeing through water[C]//SPIE Optical Engineering Applications. New York: International Society for Optics and Photonics, 2014: 921702-921702-6. https: //www.researchgate.net/publication/269098153_High_Accuracy_Image_Restoration_Method_for_Seeing_through_Water
    [18]
    Hua W, Xiea Y, Zhanga W, et al. Removing water fluctuation via motion field-based Kernel regression?[J]. Journal of Information & Computational Science, 2014, 11(15):5289-5296. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0235032165/
    [19]
    Tian Y, Narasimhan S G. Seeing through water: Image restoration using model-based tracking[C]//Computer Vision, 2009 IEEE 12th International Conference on. New York: IEEE, 2009: 2303-2310. https: //www.researchgate.net/publication/224136114_Seeing_through_water_Image_restoration_using_model-based_tracking
    [20]
    Tian Y, Narasimhan S G. A globally optimal data-driven approach for image distortion estimation[C]//Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. New York: IEEE, 2010: 1277-1284. https: //www.researchgate.net/publication/221361890_A_Globally_Optimal_Data-Driven_Approach_for_Image_Distortion_Estimation
    [21]
    Tian Y, Narasimhan S G. Globally optimal estimation of nonrigid image distortion[J]. International Journal of Computer Vision, 2012, 98(3): 279-302. doi: 10.1007/s11263-011-0509-0
    [22]
    Wen Z, Lambert A, Fraser D, et al. Bispectral analysis and recovery of images distorted by a moving water surface[J]. Applied Optics, 2010, 49(33): 6376-6384. doi: 10.1364/AO.49.006376
    [23]
    Halder K K, Tahtali M, Anavatti S G. Artificial intelligence: methods and applications[M]. Berlin: Springer International Publishing, 2014: 384-394.
    [24]
    Zhang M, Lin X, Gupta M, et al. Computer vision-ECCV 2014[M]. Berlin: Springer International Publishing, 2014: 234-250.
    [25]
    Seemakurthy K, Rajagopalan A N. Deskewing of underwater images[J]. Image Processing, IEEE Transactions on, 2015, 24(3): 1046-1059. doi: 10.1109/TIP.2015.2395814
    [26]
    McGlamery B L. A computer model for underwater camera systems[J]. SPIE Ocean Optics, 1979, 208: 221-231. https://www.researchgate.net/publication/244953801_A_Computer_Model_For_Underwater_Camera_Systems
    [27]
    Jaffe J S.Computer modeling and the design of optimal underwaterimagingsystems[J]. IEEE Journal of Oceanic Engineering, 1990, 15(2): 101-111. doi: 10.1109/48.50695
    [28]
    Trucco E, Olmos-Antillon A T. Self-tuning underwater image restoration[J]. IEEE Journal of Oceanic Engineering, 2006, 31(2): 511-519. doi: 10.1109/JOE.2004.836395
    [29]
    Sanchez-Ferreira C, Ayala H V H, Coelho L S. Multi-objective differential evolution algorithm for underwater image restoration[C]//2015 IEEE Congress on Evolutionary Computation. New York: IEEE, 2015: 243-250 https: //www.researchgate.net/publication/301287353_Multi-objective_differential_evolution_algorithm_for_underwater_image_restoration
    [30]
    Hou W, Weidemann A D. Objectively assessing underwater image quality for the purpose of automated restoration[C]//Defense and Security Symposium. New York: International Society for Optics and Photonics, 2007: 65750Q-65750Q-7. https: //www.researchgate.net/publication/235125922_Objectively_Assessing_Underwater_Image_Quality_for_the_Purpose_of_Automated_Restoration
    [31]
    Hou W, Woods S, Goode W, et al. Impacts of optical turbulence on underwater imaging[C]//SPIE Defense, Security, and Sensing. New York: International Society for Optics and Photonics, 2011: 803009-803009-7. https: //www.researchgate.net/publication/253507134_Impacts_of_optical_turbulence_on_underwater_imaging
    [32]
    Hou W W. A simple underwater imaging model[J]. Optics Letters, 2009, 34(17): 2688-2690. doi: 10.1364/OL.34.002688
    [33]
    Hou W, Woods S, Jarosz E, et al. Optical turbulence on underwater image degradation in natural environments[J]. Applied Optics, 2012, 51(14): 2678-2686. doi: 10.1364/AO.51.002678
    [34]
    Hou W, Goode W, Kanaev A. Underwater image quality degradation by scattering[C]//OCEANS, 2012-Yeosu. New York: IEEE, 2012: 1-5. https: //ieeexplore.ieee.org/document/6263409
    [35]
    Sun D, Roth S, Black M J. Secrets of optical flow estimation and their principles[C]//Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. New York: IEEE, 2010: 2432-2439. https: //www.researchgate.net/publication/221364345_Secrets_of_Optical_Flow_Estimation_and_Their_Principles
    [36]
    Brox T, Bruhn A, Papenberg N, et al. High accuracy optical flow estimation based on a theory for warping[C]//European Conference on Computer Vision. Berlin: Springer Berlin Heidelberg, 2004: 25-36. doi: 10.1007%2F978-3-540-24673-2_3
    [37]
    Lin Z, Chen M, Ma Y. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[J/OL]. arXiv, 2010, 1009:5055. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1009.5055
    [38]
    Rueckert D, Sonoda L I, Hayes C, et al. Nonrigid registration using free-form deformations: application to breast MR images[J]. IEEE Transactions on Medical Imaging, 1999, 18(8): 712-721. doi: 10.1109/42.796284
  • Related Articles

    [1]HE Sijie, DAI Caihong, CHENG Qiutong, WU Zhifeng, LI Ling, WANG Yanfei. Influence of field of view angle and positioning error on spectral radiance measurement[J]. Journal of Applied Optics, 2023, 44(2): 386-391. DOI: 10.5768/JAO202344.0203004
    [2]MA Dazhi, YU Binchao, ZHANG Yanze, LIU Wei, YUE Yi, YANG Jizhi, CHEN Qintao. Measurement system of large-scale high reflective component based on binocular vision[J]. Journal of Applied Optics, 2021, 42(4): 577-585. DOI: 10.5768/JAO202142.0401002
    [3]ZHU Wenjie, LING He, YANG Shoupeng. Research on compensation for positioning errors of carbody welding points based on binocular vision[J]. Journal of Applied Optics, 2021, 42(1): 79-85. DOI: 10.5768/JAO202142.0102005
    [4]CUI Enkun, TENG Yanqing, LIU Jiawei. Calibration error compensation technique of stereoscopic vision measurement system[J]. Journal of Applied Optics, 2020, 41(6): 1174-1180. DOI: 10.5768/JAO202041.0601006
    [5]HAO Renjie, WANG Zhongyu, LI Yaru. Error analysis method for monocular vision pose measurement system[J]. Journal of Applied Optics, 2019, 40(1): 79-85. DOI: 10.5768/JAO201940.0103001
    [6]Zhang Jianlong, Pan Xin, He Lei, Yang Zhen, Guo Xinmin, Kang Weimin. Error analysis of optical system for full-view and high-precision three-dimensional measuring instrument[J]. Journal of Applied Optics, 2018, 39(3): 392-399. DOI: 10.5768/JAO201839.0303004
    [7]Miao Lijun, Che Ziyuan. Visual locating of mobile robot based on adaptive down sampling[J]. Journal of Applied Optics, 2017, 38(3): 429-433. DOI: 10.5768/JAO201738.0302008
    [8]Wang Qiyue, Wang Zhongyu. Position and pose measurement of spacecraft based on monocular vision[J]. Journal of Applied Optics, 2017, 38(2): 250-255. DOI: 10.5768/JAO201738.0203001
    [9]Peng Fu-lun, Wang Jing, Wu Yi-lei, Guo Cheng. Object positioning and error analysis of vehicular electro-optical reconnaissance system[J]. Journal of Applied Optics, 2014, 35(4): 557-562.
    [10]DU Jun-feng. Error budget design for photoelectric theodolite[J]. Journal of Applied Optics, 2006, 27(6): 506-509.
  • Cited by

    Periodical cited type(6)

    1. 刘维慧,梁润泽,赵泉昕,卓朝博,苗永平. 双光源干涉法测量液态薄膜厚度. 大学物理实验. 2024(01): 31-36 .
    2. 易进,张瑞,薛鹏,卜韩,王志斌,李孟委. 基于弹光调制的椭偏测量驱动电路系统设计. 电子设计工程. 2024(04): 32-36+42 .
    3. 杨楠卓,欧阳名钊,周维虎,陈晓梅. 基于光谱反射技术的梯形刻面MEMS高深宽比沟槽深度测量仿真分析. 长春理工大学学报(自然科学版). 2020(02): 48-52+114 .
    4. 刘学聪,苗昕扬,詹洪磊,朱明达,张善哲,赵昆. 基于激光感生电压技术的咖啡粉粒径检测. 应用光学. 2020(05): 1117-1121 . 本站查看
    5. 肖平平,王霏,邓满兰. 基于金属包覆波导结构的纳米间隙测量研究. 激光与光电子学进展. 2020(21): 273-277 .
    6. 肖平平,王霏,邓满兰,胡红武. 基于LSPR的非贵金属纳米薄膜厚度的精确测量. 光电子·激光. 2019(12): 1286-1290 .

    Other cited types(5)

Catalog

    Article views (743) PDF downloads (61) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return