Zhang Wanyi. Athermalization design of infrared refractive-diffractive telephoto objective[J]. Journal of Applied Optics, 2017, 38(1): 12-18. DOI: 10.5768/JAO201738.0101003
Citation: Zhang Wanyi. Athermalization design of infrared refractive-diffractive telephoto objective[J]. Journal of Applied Optics, 2017, 38(1): 12-18. DOI: 10.5768/JAO201738.0101003

Athermalization design of infrared refractive-diffractive telephoto objective

More Information
  • Received Date: May 29, 2016
  • Revised Date: October 19, 2016
  • In order to improve target detection ability of IR images in long range effectively, an infrared telephoto objective for 8 μm~12 μm wave-band is designed for 640 pixel×512 pixel infrared CCD detector. Effects of surrounding environmental temperature are analyzed and refractive diffractive hybrid thermal compensation is discussed. Focal length of the system is 200 mm, relative aperture is 1:2.2 and field of view is 7°. Infrared telephoto system with small volume and compact structure is designed in a large range of temperature. The system is composed of four lenses with only three materials of zinc sulfide, zinc selenide and germanium to compensate for the temperature. Image quality of the system is evaluated by ZEMAX optical design software. Results show that modulation transfer function (MTF) for each field of view at cut-off frequency of 17 lp/mm is greater than 0.4 which approaches diffraction limit. Root mean square radius of spot diagram for each field of view is close to Airy disk radius. Telephoto objective has favorable performance at working temperature of -40 ℃~+60 ℃. The system meets the requirements of technical specification.
  • [1]
    Amantea R, Knoedler C M, Pantuso F P, et al. Uncooled IR imager with 5-mK NEDT[J]. SPIE, 1997, 3061:210-222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026105355
    [2]
    Amantea R, Goodman L A, Pantuso F P, et al. Progress toward an uncooled IR imager with 5-mK NETD[J]. SPIE, 1998, 3436: 647-659. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026122087
    [3]
    胡铁力, 马世帮, 郭羽, 等.热像仪空间NETD测量技术[J].应用光学, 2014, 35 (6):1094-1098. http://d.old.wanfangdata.com.cn/Periodical/yygx201406033

    Hu Tieli, Ma Shibang, Guo Yu, et al. Spatial NETD measurement of thermal imager[J]. Journal of Applied Optics, 2014, 35(6):1094-1098. http://d.old.wanfangdata.com.cn/Periodical/yygx201406033
    [4]
    Behrmann G P, Bowen J P. Influence of temperature on diffractive lens performance[J]. Applied Optics, 1993, 32(14): 2483-2489. doi: 10.1364/AO.32.002483
    [5]
    Tamagawa Y, Wakabayashi S, Tajime T, et al. Multilens system design with an athermal chart[J]. Applied Optics, 1994, 33(34): 8009-8013. doi: 10.1364/AO.33.008009
    [6]
    张续严, 姜瑞凯, 贾宏光.大相对孔径长波红外光学系统无热化设计[J].应用光学, 2011, 32(6):1227-1231. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx201106034

    Zhang Xuyan, Jiang Ruikai, Jia Hongguang. Athermalization of long-wave infrared optical system with large relative aperture[J]. Journal of Applied Optics, 2011, 32(6):1227-1231. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx201106034
    [7]
    Tamagawa Y, Tajime T. Dual-band optical systems with a projective athermal chart: design[J]. Applied Optics, 1997, 36(1): 297-301. doi: 10.1364/AO.36.000297
    [8]
    Kuo C W, Lin C L, Han C Y. Dual field-of-view midwave infrared optical design and athermalization analysis[J]. Applied Optics, 2010, 49(19): 3691-3700. doi: 10.1364/AO.49.003691
    [9]
    林福跳, 刘朝晖.中波红外折衍光学系统消热差设计与杂光分析[J].应用光学, 2010, 31(5):833-837. doi: 10.3969/j.issn.1002-2082.2010.05.033

    Lin Futiao, Liu Zhaohui. MWIR refractive /diffractive hybrid athermal optical system and its stray[J]. Journal of Applied Optics, 2010, 31(5):833-837. doi: 10.3969/j.issn.1002-2082.2010.05.033
    [10]
    刘秀军, 张金旺, 张华卫, 等.中波红外制冷型光学系统消热差设计[J].应用光学, 2013, 34(3): 391-396. http://d.old.wanfangdata.com.cn/Periodical/yygx201303002

    Liu Xiujun, Zhang Jinwang, Zhang Huawei, et al. Athermal design of cooled MWIR optical system[J]. Journal of Applied Optics, 2013, 34(3): 391-396. http://d.old.wanfangdata.com.cn/Periodical/yygx201303002
    [11]
    Smith W J. Modern optical engineering[M]. New York: Tata McGraw-Hill Education, 1966.
    [12]
    Jamieson T H. Thermal effects in optical systems[J]. Optical Engineering, 1981, 20(2): 202156-202160. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_57c961f1e6b25dc68b7e8637bde44c73
    [13]
    Caldwell J B. Apochromatic telephoto lens with a diffractive element[J]. Optics and Photonics News, 1998, 9(10): 38-40. doi: 10.1364/OPN.9.10.000038
    [14]
    Flores A, Wang M R, Yang J J. Achromatic hybrid refractive-diffractive lens with extended depth of focus[J]. Applied Optics, 2004, 43(30): 5618-5630. doi: 10.1364/AO.43.005618
    [15]
    Wood A P. Design of infrared hybrid refractive-diffractive lenses[J]. Applied Optics, 1992, 31(13): 2253-2258. doi: 10.1364/AO.31.002253
    [16]
    Focus Software. ZEMAX optical design program User's guide[M]. New York: Focus Software Inc., 2000.
    [17]
    张欣婷, 安志勇.双层谐衍射双波段红外消热差光学系统设计[J].光学学报, 2013, 33(6):274-278. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201306039

    Zhang Xinting, An Zhiyong. Design of infrared athermal optical system for dual-band with double-layer harmonic diffraction element[J]. Acta Optica Sinica, 2013, 33(6): 274-278. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201306039
    [18]
    白瑜, 邢廷文, 林妩媚, 等.中波红外成像无热化光学系统设计[J].应用光学, 2012, 33(1): 181-185. http://d.old.wanfangdata.com.cn/Periodical/yygx201201033

    Bai Yu, Xing Tingwen, Lin Wumei, et al. Athermalization of middle infrared optical system[J]. Journal of Applied Optics, 2012, 33(1): 181-185. http://d.old.wanfangdata.com.cn/Periodical/yygx201201033
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views (1073) PDF downloads (158) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return