Zhang Xiaohong. Measurement of highvelocity gas flow parameters using laser Brillouin scattering[J]. Journal of Applied Optics, 2016, 37(3): 482-488. DOI: 10.5768/JAO201637.0307002
Citation: Zhang Xiaohong. Measurement of highvelocity gas flow parameters using laser Brillouin scattering[J]. Journal of Applied Optics, 2016, 37(3): 482-488. DOI: 10.5768/JAO201637.0307002

Measurement of highvelocity gas flow parameters using laser Brillouin scattering

More Information
  • Received Date: March 17, 2015
  • Revised Date: March 27, 2016
  • Laser Brillouin scattering is the result of the inelastic light scattering from the medium density fluctuations. The shape of the Brillouin scattering spectrum is dependent on the gas pressure, temperature, and the scattering angle. An effective nonintrusive method for measuring the temperature and pressure in gas flow was provided. The measurement principle of the highvelocity gas flow parameters by using laser Brillouin scattering was reviewed. A measurement device based on the FabryPerot interferometer (FPI) was designed to measure the RayleighBrillouin spectrum of the gas flow, and the laser Brillouin scattering spectrum was obtained for a N2 gas flow. Experimental results show that the error of the pressure and temperature derived from the Brillouin scattering spectrum is less than 15% compared with the theory model.
  • [1]Cao Chunli, Xu Shengli, Liu Erwei. Temperature measurement of Mach shock reflection by twowavelength NOPLIF method[J].  Journal of University of Science and Technology of China, 2013, 43(6):510515.
        曹春丽, 徐胜利, 刘二伟. 双波长NOPLIF测量激波反射温度场的实验研究[J]. 中国科学技术大学学报, 2013, 43(6):510515.   
    [2]Song Junling, Hong Yanji, Wang Guangyu, et al. Measurement of supersonic flow parameters using laser absorption spectroscopy[J]. Infrared and Laser Engineering, 2014, 43(11):35103515.
        宋俊玲, 洪延姬, 王广宇, 等. 基于吸收光谱技术的超声速气流参数测量[J]. 红外与激光工程, 2014, 43(11):35103515.   
    [3]Panda J ,Seasholtz R G. Velocity and temperature measurement in supersonic free jets using spectrally resolved rayleigh scattering[C]. Virginia:American Institute of Aeronautics and Astronautics (AIAA), 1999.
    [4]Seasholtz R G, Panda J, Elam K A. Rayleigh scattering diagnostic for measurement of velocity and density fluctuation spectra[C]. Virginia:American Institute of Aeronautics and Astronautics(AIAA),2002.
    [5]Mielke A F, Seasholtz R G, Elam K A, et al. Timeaverage molecular Rayleigh scattering technique for measurement of velocity, density, temperature, and turbulence intensity in high speed nozzle flows[C]. Virginia:American Institute of Aeronautics and Astronautics (AIAA),2004.
    [6]Mielke A F, Seasholtz R G., Elam K A, et al. Timeaverage measurement of velocity, density, temperature, and turbulence velocity fluctuations using Rayleigh and Mie scattering[J]. Exp. Fluids, 2005, 39(2), 441454.
    [7]Mielke A F, Elam K A, Sung C J. Timeresolved Rayleigh scattering measurements in hot gas flows[C]. Virginia:American Institute of Aeronautics and Astronautics (AIAA), 2008.
    [8]Mielke A F, Clem M M, Elam K A, et al. Progress on a Rayleigh scattering mass flux measurement technique[C]. Virginia:American Institute of Aeronautics and Astronautics (AIAA), 2010.
    [9]Li Tao, Li Gaoping, Wu Lei, et al. Analysis and design of imaging FabryPerot interferometers for measurement of RayleighBrillouin scattering spectra in gas flows[J]. SPIE, 2013, 8910:89101E.
    [10]Li Tao ,Wu Lei , Yuan Liang, et al. Measurement of RayleighBrillouin spectra in gas flows[J]. SPIE, 2015, 9449:944930.
    [11]Miles R B, Lempert W R, Forkey J N. Laser Rayleigh scattering[J]. Meas. Sci. & Technol., 2010, 12(5):R33R51.
    [12]Ubachs W M G, Duijn van E J, Vieitez M O, et al. A spontaneous RayleighBrillouin scattering experiment for the characterization of atmospheric lidar backscatter[R].  Netherlands:European Space Agency(ESA) Report, 2010:1203.
    [13]Tenti G, Boley C D, Rashmi C. D. On the Kinetic model description of RayleighBrillouin scattering from molecular gases [J]. Canadian Journal of Physics, 1974, 52(4):285290.
    [14]Zheng Qiuhua. On the RayleighBrillouin scattering in air [D]. US:New Hampshire University, 2004.
  • Related Articles

    [1]MA Dazhi, YU Binchao, ZHANG Yanze, LIU Wei, YUE Yi, YANG Jizhi, CHEN Qintao. Measurement system of large-scale high reflective component based on binocular vision[J]. Journal of Applied Optics, 2021, 42(4): 577-585. DOI: 10.5768/JAO202142.0401002
    [2]WANG Congzheng, HU Song, FENG Chang, GAO Chunming. Deformation detection system of fuel assembly based on underwater binocular vision[J]. Journal of Applied Optics, 2019, 40(2): 246-252. DOI: 10.5768/JAO201940.0202001
    [3]Wang Jing, Li Shuangjiang, Tian Shizhu. Application of binocular stereo vision technology in structural test[J]. Journal of Applied Optics, 2018, 39(6): 821-826. DOI: 10.5768/JAO201839.0601008
    [4]He Wenjun, Wang Jiake, Fu Yuegang, Mo Shijun. On-line measurement system of high voltage insulator based on binocular stereo vision[J]. Journal of Applied Optics, 2018, 39(4): 528-535. DOI: 10.5768/JAO201839.0403003
    [5]Xiong Xin, Sun Dong-mei, Fan Wen, Xu Hai-peng. Calibration technique of binocular vision measurementsystem using light pen[J]. Journal of Applied Optics, 2015, 36(5): 784-790. DOI: 10.5768/JAO201536.0503004
    [6]Liu Xiao-dong, Hou Jian-wei, Zhu Jia-li, Qiu Wei-gen, Sun Jian-hua. Design for visual comfort of binocular optical system with large exit pupil[J]. Journal of Applied Optics, 2015, 36(1): 15-18. DOI: 10.5768/JAO201536.0101003
    [7]LIN Hong, LIANG Kun, WANG Xin-min, LU jin-jun. Oceanic suspended particles monitoring based on bio-optical algorithm[J]. Journal of Applied Optics, 2011, 32(3): 486-491.
    [8]LI You, ZHANG Heng, LEI Zhi-hui. Detection and tracking of light blobs based on center-surround mechanism of biological vision[J]. Journal of Applied Optics, 2008, 29(2): 283-288.
    [9]LI Jian-ping, LI Dong. Applications of OCT Technique in Developmental Biology[J]. Journal of Applied Optics, 2005, 26(2): 60-64.
    [10]LI Jian-ping, CHEN Bing-quan. Validity of the Diffusion Approximation in Determining the Optical Properties of Biological[J]. Journal of Applied Optics, 2005, 26(1): 20-24.
  • Cited by

    Periodical cited type(5)

    1. 王爽,李克武. 双折射测量系统的弹光调制器原位定标及数据处理研究. 激光杂志. 2025(03): 76-83 .
    2. 刘坤,李克武,王爽,王志斌,张易琨. 弹光调制器动态参数测量与高效驱动匹配研究. 应用光学. 2024(02): 415-421 . 本站查看
    3. 杨军营,韩培高,魏莹莹. 无频响影响的光弹调制器定标新方法. 中国激光. 2024(08): 127-133 .
    4. 刘坤,李克武,李坤钰,王爽,王志斌. 弹光调制器相频特性分析与稳定控制技术. 激光杂志. 2024(07): 36-41 .
    5. 臧晓阳,李克武,王志斌,李坤钰,梁振坤,刘坤. 快轴可调弹光调制器闭环稳定控制研究. 激光与光电子学进展. 2023(07): 329-336 .

    Other cited types(4)

Catalog

    Article views (1312) PDF downloads (51) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return