Xie Hongbo, Xu Mengmeng, Gong Yanxia, Fang Chunlun, Jiang Min, Meng Qingbin. Optical system design of widespectrum and ultra highspeed 8frame framing camera[J]. Journal of Applied Optics, 2016, 37(2): 172-176. DOI: 10.5768/JAO201637.0201004
Citation: Xie Hongbo, Xu Mengmeng, Gong Yanxia, Fang Chunlun, Jiang Min, Meng Qingbin. Optical system design of widespectrum and ultra highspeed 8frame framing camera[J]. Journal of Applied Optics, 2016, 37(2): 172-176. DOI: 10.5768/JAO201637.0201004

Optical system design of widespectrum and ultra highspeed 8frame framing camera

More Information
  • Received Date: November 09, 2015
  • Revised Date: November 25, 2015
  • In order to satisfy the need of digital ultra highspeed imaging and improve the time resolution of the camera, an optical system of 8frame gated camera applied to 350 nm~800 nm waveband was designed. The structure of the system was based on splitting the focused imaging light beam with the aperture located externally. It could capture 8 of the same object images. The influence of some significant optical parameters, such as image distance and image side numerical aperture on illumination difference between multiframe framing system images, the correction of chromatic aberration in wide spectral imaging system and other problems were analyzed. Moreover,the relay lens was designed and optimized with Code V. The effective image size is Φ26mm,the modulation transfer funtion (MTF) of image space is better than 0.5 at 40 lp/mm, the distortion is less than 1%, and the illumination difference of 8frame images is within ±10%. The results show that the practical system has good imaging quality and each split image has high consistency.
  • [1]Li Jingzhen. Time amplifying techniques towards atomic time resolution[J]. Sci. China Ser. ETech. Sci.,2009, 39(12): 18871904. 李景镇. 迈向原子时间分辨的时间放大技术[J]. 中国科学E辑, 2009, 39(12): 18871904. [2]Shan Baozhong, Guo Baoping, Niu Hanben. Multichannel nanosecond framing camera with gate selection[J]. Optics and Precision Engineering, 2007, 15(12): 19631968. 单宝忠,郭宝平,牛憨笨. 多通道门选通纳秒分幅相机[J]. 光学精密工程, 2007, 15(12):19631968. [3]Li Jian,Liu Ningwen,Xiao Zhengfei,et al. Optical system design of ultra high speed optic electronic framing camera used in shlieren experiment[J]. OptoElectronic Engineering, 2014(10):3841. 李剑,刘宁文,肖正飞,等. 可用于多幅纹影照相的超高速光电分幅相机光学系统设计[J]. 光电工程,2014(10):3841. [4]Pendley G J. High speed imaging technology: yesterday, today, & tomorrow[J]. SPIE,2003, 4948: 110113. [5]Jing Xiaoguo, Wang Yuan, Jin Guang, et al. Threeframe framing camera with ultrahigh speed and high performance[J]. Acta Photonica Sinca, 2013, 42(9): 10651070. 江孝国,王远,金光,等. 超高速高性能门控型三分幅相机[J]. 光子学报, 2013, 42(9): 10651070. [6]Lyu Eryang. The study on the design of optical splitting for the relay system[D]. Tianjin:Tianjin Uiniversity,2012. 吕二阳. 一种中继分幅光学系统的设计方法研究[D].天津:天津大学,2012. [7]Xie Hongbo,Zhu Shimin,Gong Yanxia,et al.The design of offaxis optical system applied for digital highspeed imaging[J]. Journal of Applied Optics, 2015,36(2):194198. 谢洪波,祝世民,龚艳霞,等. 应用于数字高速成像的离轴光学系统设计[J]. 应用光学,2015,36(2):194198. [8]Yu Daoyin, Tan Hengying. Engineering optics[M]. Beijing:Beijing Mechanical Industry Press, 2006 郁道银,谈恒英. 工程光学[M]. 北京:机械工业出版社, 2006. [9]Zhang Yimo. Applied optics [M].Beijing: Publishing House of Electronics Industry, 2008. 张以谟. 应用光学[M]. 北京:电子工业出版社, 2008. [10]Chen Jiao,Jiao Mingyin,Chang Weijun,et al.Optical desigh of apochromatic microscope objective for near ultravioletvisible wide spectrum[J]. Journal of Applied Optics, 2011,32(6):10981102. 陈姣,焦明印,常伟军,等. 近紫外可见光宽波段复消色差显微物镜设计[J]. 应用光学,2011,32(6):10981102. [11]de Albuquerque B F,Sasian J, de Sousa F L. Method of glass selection for color correction in optical system design.[J]. Optics Express,2012,20(13):13592611. [12]Wang Meiqin,Wang Zhonghou, Bai Jiaguang.Removing secondary spectrum in wide spectrum optical system[J]. Journal of Applied Optics, 2010,31(3):360364. 王美钦,王忠厚,白加光. 宽谱段光学系统消二级光谱的设计[J]. 应用光学,2010,31(3):360364.
  • Related Articles

    [1]TAN Ligang, WEI Meiting, LI Jie, LUO Mingwei. Design and simulation of 0.2 μm~20 μm ultra-wide spectrum metamaterial absorption structure[J]. Journal of Applied Optics, 2024, 45(5): 903-915. DOI: 10.5768/JAO202445.0501004
    [2]ZHAO Ming, WANG Tianshu. Wide spectrum Yb-doped Figure-9 fiber laser cavity based on dispersion compensation[J]. Journal of Applied Optics, 2024, 45(4): 834-840. DOI: 10.5768/JAO202445.0407001
    [3]WU Yuting, LIN Zhiqiang, WANG Min. Design of 15 mm~300 mm wide-spectrum zoom optical system[J]. Journal of Applied Optics, 2023, 44(3): 491-499. DOI: 10.5768/JAO202344.0301004
    [4]SI Changtian, YANG Lei, GUO Chengxiang, SHI Tianyi, XIE Hongbo. Ultraviolet relay optical system with wide spectrum based on diffractive elements[J]. Journal of Applied Optics, 2023, 44(3): 476-483. DOI: 10.5768/JAO202344.0301002
    [5]LUO Rui, LIANG Xiuling. Design of large-aperture and wide-spectrum zoom lens[J]. Journal of Applied Optics, 2022, 43(5): 839-845. DOI: 10.5768/JAO202243.0501002
    [6]YE Jingfei, ZHU Runhui, MA Mengcong, DING Tianyu, SONG Zhenzhen, CAO Zhaolou. Design of UV optical system with wide ultraviolet spectrum and large relative aperture[J]. Journal of Applied Optics, 2021, 42(5): 761-766. DOI: 10.5768/JAO202142.0501001
    [7]CHEN Jiao, JIAO Ming-yin, CHANG Wei-jun, KANG Wen-li. Optical design of microscopic imaging system for ultraviolet-visiblewide spectrum[J]. Journal of Applied Optics, 2011, 32(2): 195-199.
    [8]WANG Mei-qin, WANG Zhong-hou, BAI Jia-guang. Removing secondary spectrum in wide spectrum optical system[J]. Journal of Applied Optics, 2010, 31(3): 360-364.
    [9]GUO Cheng, WANG Gao-ming, ZHANG Liang-liang, YANG Zhi-wen. Design of wide spectrum low-light-level collimating lens[J]. Journal of Applied Optics, 2009, 30(2): 199-201.
    [10]TAN Yu, ZHAO Xing-mei. Coating of Beamsplitting Film System Working in aUltra Wide Spectral Range[J]. Journal of Applied Optics, 2005, 26(4): 53-55.
  • Cited by

    Periodical cited type(21)

    1. 赵涵卓,丁宇航,张宗华,王晨,张昂,孟召宗,肖艳军,高楠. 条纹投影测量系统标定方法研究. 河北工业大学学报. 2023(03): 17-28 .
    2. 王红平,刘鑫,赵世辰,王宇,王磊. 基于缺失点云的飞机表面锪孔质量检测. 光子学报. 2022(12): 203-215 .
    3. 李辰,刘建明,何晴. 一种基于连续相位优化的三维形貌测量方法. 现代电子技术. 2021(05): 61-65 .
    4. 胥劲,张启灿,薛俊鹏,刘元坤. 手机屏显靶标用于标定小视场双目三维测量系统. 光学与光电技术. 2021(02): 55-63 .
    5. 何景宜,高允珂,刘姗,孙长森. 检测印刷电路板组件的光栅投影镜头设计. 光学与光电技术. 2021(03): 108-114 .
    6. 刘洋,潘娅,罗玉琴. 一种逐周期条纹背景自适应去除算法. 计算机测量与控制. 2021(11): 148-153 .
    7. 冯维,汤少靖,赵晓冬,赵大兴. 基于自适应条纹的高反光表面三维面形测量方法. 光学学报. 2020(05): 119-127 .
    8. 李承杭,薛俊鹏,郎威,张启灿. 基于相位映射的双目视觉缺失点云插补方法. 光学学报. 2020(01): 260-269 .
    9. 王晨,张宗华,丁宇航,赵涵卓,张昂,孟召宗,肖艳军,高楠. 基于立体标靶的双目系统标定研究. 光学技术. 2020(03): 322-329 .
    10. 张娟娟,沈小渝. 基于三维投影矩阵的生产流水线对接系统平台构建. 食品与机械. 2019(10): 65-69+74 .
    11. 陈诚,张宏儒,陈少轩,刘冰,张凯. 直线运动机构三维角误差同步测量方法研究. 仪器仪表学报. 2019(10): 145-151 .
    12. 王柳,陈超,高楠,张宗华. 基于自适应条纹投影的高反光物体三维面形测量. 应用光学. 2018(03): 373-378 . 本站查看
    13. 顾超,穆平安. 基于面结构光的双目立体匹配算法研究. 电子科技. 2017(01): 16-18+22 .
    14. 胡天正,侯少博. 石窟建筑三维数字图像形貌拼接方法优化仿真. 计算机仿真. 2017(12): 250-253+330 .
    15. 王静强,刘桂华,赵碧霞,王玉玫. 基于伪随机阵列和正弦光栅的结构光标定. 计算机应用与软件. 2017(12): 116-121 .
    16. 张西宁,张海星,吴婷婷. 一种转动容器中磁流体液表面形貌测量方法. 西安交通大学学报. 2017(01): 103-108 .
    17. 蒋艳鹏,吴思进,杨连祥. 形貌与微变形全场光学同时测量方法. 应用光学. 2017(01): 67-71 . 本站查看
    18. 曾灼环,黄超,屈国丽,伏燕军. 基于二进制条纹加相位编码条纹离焦投影的三维测量方法. 应用光学. 2017(05): 790-797 . 本站查看
    19. 王一,刘会艳,宋宝根. 平行光干涉投影三维形貌恢复方法. 应用光学. 2017(05): 798-803 . 本站查看
    20. 丁一飞,王永红,胡悦,黄安琪,但西佐. 样本块匹配光栅投影阶梯标定方法. 中国测试. 2016(08): 7-12 .
    21. 张湧涛,王祎泽,王一,宋志伟. 电光材料调制误差对平行光束干涉投影的影响. 应用光学. 2016(02): 235-239 . 本站查看

    Other cited types(24)

Catalog

    Article views (1500) PDF downloads (71) Cited by(45)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return