Ma Chen-hao, Fu Yue-gang. Method for increasing HWS sampling rate on lens micro-scanning[J]. Journal of Applied Optics, 2015, 36(5): 768-773. DOI: 10.5768/JAO201536.0503001
Citation: Ma Chen-hao, Fu Yue-gang. Method for increasing HWS sampling rate on lens micro-scanning[J]. Journal of Applied Optics, 2015, 36(5): 768-773. DOI: 10.5768/JAO201536.0503001

Method for increasing HWS sampling rate on lens micro-scanning

More Information
  • In order to improve the shortcoming of insufficient sampling of measured wavefront in traditional Hartmann-Shack wavefront sensor(HWS), the HartmannShack wavefront sensor and micro-scanning technology were analyzed, at the same time, the method of lens micro-scanning by raising the sampling rate in Hartmann-Shack wavefront sensor was proposed . The lens scanning device driven by PbZrTiO3 (PZT) was added before the microlens array,and the highresolution micro-scanning image was reconstructed for the spot distribution collected by the charge coupled device (CCD) . After the wavefront reconstruction of the rebuilt spot distribution, the sampling rate of measured wavefront was improved in Hartmann-Shack wavefront sensor. Comparison experiments verify that the method can raise the recovered accuracy of wavefront by 41%, and it can effectively increase the accuracy of wavefront detection in Hartmann-Shack wavefront sensor.
  • [1]Zhang Jinye, Li Song, Zhou Hui, et al. New testing method for cone prism based on Hartmann-shack wavefront sensor[J]. Journal of Applied Optics, 2008,29(1):136-140.
    张金业, 李松, 周辉, 等. 一种基于哈特曼传感器的角锥棱镜检测方法[J]. 应用光学, 2008, 29(1): 136-140.
    [2]Zhang Jinping, Zhang Zhongyu, Zhang Xuejun, et al. Algorithm for extending dynamic range of Shack-Hartmann wavefront sensor[J]. Acta Optica Sinica, 2011, 31(8):140-144.
    张金平, 张忠玉, 张学军, 等. 增大夏克哈特曼波前传感器动态范围的算法研究[J]. 光学学报, 2011, 31(8): 140-144.
    [3]Clare R M, Lane R G. Comparison of wavefront sensing using subdivision at the aperture and focal planes[J]. Palmerston North,2003,187-192.
    [4]Clare R M, Lane R G. Phase retrieval from subdivision of the focal plane with a lenslet array[J].Applized. Optics, 2004, 43:4080-4087.
    [5]José M R R, Fernando R G, José G M. Wavefront aberration and distance measurement phase camera:European,1983318A1[P].2008-10-22.
    [6]RodríguezRamos J M, Castelló E M, Conde C D, et al. 2D-FFT implementation on FPGA for wavefront phase recovery from the CAFADIS camera[J]. SPIE, 2008,7015: 701539-1-11.
    [7]Li Xinyang, Jiang Wenhan. Zernike modal wavefront reconstruction error of Hartmann-Shack wavefront sensor[J]. Acta Optics Sinica, 2002, 22(10):1236-1240.
    李新阳, 姜文汉. 哈特曼—夏克传感器的泽尼克模式波前复原误差[J]. 光学学报, 2002, 22(10): 1236-1240.
    [8]Yang Huafeng, Jiang Zongfu. Research of Zernike modal wavefront reconstruction of 19-element Hartmann-Shack wavefront sensor[J]. Laser Technology, 2005, 29(5):484-487.
    杨华峰, 姜宗福. 对 Zernike 模式法重构-19 单元哈特曼测量波前的研究[J]. 激光技术, 2005, 29(5): 484-487.
    [9]Tang Guomao, He Yumei, Liao Zhou. Radial Hartmann method for measuring large optical system[J]. Chinese Journal of Lasers, 2010,37(3):795-799.
    汤国茂, 何玉梅, 廖周. 大型光学系统径向哈特曼像质检测方法[J]. 中国激光, 2010,37 (3): 795-799.
    [10]Kou Songfeng, Liu Genrong, Niu Dongsheng, et al. Design of Song ShackHartmann optical system[J]. Journal of Applied Optics, 2014, 35(1):1-6.
    寇松峰, 刘根荣, 牛冬生, 等. “宋” 望远镜夏克哈特曼光学系统设计[J]. 应用光学, 2014, 35(1): 1-6.
    [11]Cheng Liqun, Wang Xiaoman, Jing Wenbo. Centroid detection of Shack-Hartmann wave-front sensor by marked watershed method[J]. Optics and Precision Engineering, 2014,22(6):1494-1499.
    程利群, 王晓曼, 景文博. 利用标记分水岭法实现夏克-哈特曼波前传感器质心探测[J]. 光学精密工程, 2014, 22(6): 1494-1499.
    [12]Li Hui, Wu Yuntao, Pan Fan, et al. Study on electrically tunable Shack-Hartmann wavefront sensor based on liquid crystal[J]. Acta Optica Sinica, 2013,33(12): 290-297.
    李晖, 吴云韬, 潘凡, 等. 基于液晶电控可调夏克-哈特曼波前传感器的研究[J]. 光学学报, 2013 (12): 290-297.
    [13]Peng Fulun, Feng Zhuoxiang. Effect of micro-scanning on spatial resolution[J]. Journal of Applied Optics, 2006, 27(5):394-399.
    彭富伦, 冯卓祥. 微扫描对空间分辨率的影响[J]. 应用光学, 2006, 27(5): 394-399.
  • Cited by

    Periodical cited type(3)

    1. 张建花,高帅华. 基于影像实时处理的加油对接段辅助对准技术. 应用光学. 2022(02): 234-239 . 本站查看
    2. 张建花,陈贝,马晓东. 基于图像的空中加油软管平衡拖曳位置测量方法. 应用光学. 2021(04): 723-727 . 本站查看
    3. 符毅,孔星炜,董新民. 基于自适应SRUKF的无人机位姿预测方法. 应用光学. 2019(01): 21-26 . 本站查看

    Other cited types(0)

Catalog

    Article views (1460) PDF downloads (96) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return