Citation: | Lu Yan-yi, Liu Qiao-qiao, Zhao Chun-liang, Shen Yong, Wang Hua. Reconstruction algorithm for focused ultrasonic fields based on schlieren method[J]. Journal of Applied Optics, 2015, 36(5): 742-747. DOI: 10.5768/JAO201536.0502003 |
[1]Jiang Xueping, Chen Xi, Qian Menglu. Theoretical and experimental investigation of imaging the acoustic fields by schlieren techniques[J]. Technical Acoustics, 2011, 30(05): 1-4.
姜学平, 程茜, 钱梦騄. 纹影法对声场成像的理论和实验研究[J]. 声学技术, 2011, 30(05): 1-4. [2]Torras-Rosell A, Barrera-Figuera S, Jacobsen F. Sound field reconstruction using acousto-optic tomography[J]. Acoustical Society of America, 2012, 131(5): 3786-3793. [3]Kudo N, Sanbonmatsu Y, Shimizu K. Microscopic visualization of high-frequency ultrasound fields using a new method of schlieren photography[C]. US: IEEE, 2010: 829-832. [4]Chinnery P A, Humphrey V F, Beckett C. The schlieren image of two-dimensional ultrasonic fields and cavity resonances[J]. Acoustical Society of America, 1997,101(1): 250-256. [5]Zhu Weimin. A study on measurement of ultrasound field based on optical technology[J]. Measurement Technique, 2013, 5: 16-18. 朱卫民. 一种基于光学技术的超声场测量方法研究[J]. 计量技术, 2013, 5: 16-18. [6]Remenieras J P, Matar O B, Calle S, et al. Acoustic pressure measurement by acousto-optic tomography[C]. US: IEEE, 2001: 505-508. [7]Settles G S. Schlieren and shadowgraph techniques: visualizing phenonmena in transparent media[M]. New York: Springer, 2001: 25-28. [8]Moller D, Degen N, Dual J. Schlieren visualization of ultrasonic standing waves in mm-sized chambers for ultrason.ic particle manipulation[J]. Journal of Nanobiotechnology, 2013, 11(1): 1-5. [9]Unverzagt C, Olfert S, Henning B. A new method of spatial filtering for schlieren visualization of ultrasound wave fields[J]. Physics Procedia, 2010, 3(1): 935-942. [10]Zhu Guozhen, Lu Kean, Fu Deyong, et al.Experiments on two kinds of threshold for the acoustic pressure gradient of a schlieren system[J]. Measurement Science and Technology, 2002, 13(4): 483-487. [11]Brownlee C, Pegoraro V, Shankar S, et al. Physically-based interactive flow visualization based on schlieren and interferometry experimental techniques[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(11): 1574-1586. [12]Su Xianyu,Li Jitao,Cao Yiping,et al. Information optics[M].2nd ed. Beijing: Science Press, 2011: 207-208. 苏显渝,李继陶,曹益平,等.信息光学[M].2版.北京:科学出版社, 2011, 207-208. [13]Shan Zijuan, Wang Dingxing, Li Zhengzhi. Properties of a laser schlieren system[J]. Acta Optica Sinica, 1984, 4(10): 880-886. 单子娟, 王定兴, 李正直. 一种激光纹影仪的光学特性[J]. 光学学报, 1984, 4(10): 880-886. [14]Harvey G, Gachagan A, Mcnab A. Ultrasonic field measurement in test cells combining the acousto-optic effect, laser interferometry & tomography[J]. Proc. IEEE Ultrason. Symp, 2004, 2: 1038-1041. [15]Holm A, Persson H W, Lindstrom K. Optical diffraction tomography of ultrasonic fields with Algebraic Reconstruction Techniques[J]. Proc. IEEE Ultrason. Symp, 1990, 2: 685-688. [16]Huang Liyu. Basic principle of medical imaging[M]. Beijing: Publishing House of Electronics Industry, 2009: 99-102. 黄力宇.医学成像的基本原理[M]. 北京: 电子工业出版社, 2009: 99-102. [17]Zhang Dejun. High intensity focused ultrasound transducer[J]. Chinese Journal of Ultrasound Diagnosis, 2000, 1(2): 1-4. 张德俊.高强度聚焦超声换能器[J].中国超声诊断杂志, 2000, 1(2): 1-4. |
[1] | WANG Changmiao, LI Hui, SU Chenbo, WU Yuntao. Convex optimization-based mesoscopic 3D reconstruction method for fluorescence-free light fields[J]. Journal of Applied Optics, 2024, 45(6): 1179-1188. DOI: 10.5768/JAO202445.0602002 |
[2] | YU Zihao, LIU Jin, YANG Haima, LI Meiying, XU Wei, XU Bin. Research on 3D measurement and reconstruction of high-precision profile of multi-frequency grating object[J]. Journal of Applied Optics, 2020, 41(3): 580-585. DOI: 10.5768/JAO202041.0303006 |
[3] | WANG Danping, XIE Mengyuan, LI Zhibin, ZHU Wenguo, YU Jianhui, CHEN Zhe, ZHANG Jun. Research on reconstruction algorithm of lensless microscopic imaging[J]. Journal of Applied Optics, 2019, 40(4): 589-595. DOI: 10.5768/JAO201940.0402002 |
[4] | QU Hui, ZHOU Wen-jing, WU Xiao-yan, LI Hai-peng. Two-step iterative shrinkage reconstruction of single in-line hologram[J]. Journal of Applied Optics, 2013, 34(5): 796-801. |
[5] | WANG Bo, XUE Ying, YU Hui-tian. Two analytical reconstruction algorithms for spiral cone-beam computerized tomography[J]. Journal of Applied Optics, 2011, 32(5): 894-898. |
[6] | ZHANG Yi-fei, LI Liang-fu, WANG Jiao-ying, ZHENG Bao-zhong. Image enhancement algorithm based on super resolution reconstruction[J]. Journal of Applied Optics, 2011, 32(2): 250-255. |
[7] | XU Qing, CAO Na, HEI Dong-wei, CAO Liang, MA Ji-ming, ZHANG Zhan-hong, HAN Chang-cai, LEI Lan. Reconstruction algorithm of particle fields digital holographic diagnosis[J]. Journal of Applied Optics, 2010, 31(6): 969-973. |
[8] | CHANG Fang-Fei, ZHANG Zhi-Min. Error analysis of common iterative reconstruction algorithmsin optical chromatographic technique[J]. Journal of Applied Optics, 2009, 30(4): 616-621. |
[9] | LI Su-ning, ZHU Ri-hong, LI Jian-xin, WANG Yan. Method of reconstruction on Fourier-Transform spectroscopy[J]. Journal of Applied Optics, 2009, 30(2): 268-272. |
[10] | DING Ze-hui, CHEN Shao-hua. Image reconstruction algorithm for CT from fewer views based on simulated annealing genetic algorithm[J]. Journal of Applied Optics, 2006, 27(6): 520-524. |
1. |
刘海秋,高彦伟,闫得杰. 基于遥感图像及工程参数的全局像移探测算法. 应用光学. 2019(05): 838-846 .
![]() | |
2. |
刘铁英,巩红晓. 科技期刊三线表使用中的常见问题. 学报编辑论丛. 2016(00): 131-135 .
![]() |