Lu Yan-yi, Liu Qiao-qiao, Zhao Chun-liang, Shen Yong, Wang Hua. Reconstruction algorithm for focused ultrasonic fields based on schlieren method[J]. Journal of Applied Optics, 2015, 36(5): 742-747. DOI: 10.5768/JAO201536.0502003
Citation: Lu Yan-yi, Liu Qiao-qiao, Zhao Chun-liang, Shen Yong, Wang Hua. Reconstruction algorithm for focused ultrasonic fields based on schlieren method[J]. Journal of Applied Optics, 2015, 36(5): 742-747. DOI: 10.5768/JAO201536.0502003

Reconstruction algorithm for focused ultrasonic fields based on schlieren method

More Information
  • In order to rebuild the pressure distribution from the schlieren image of focused ultrasound field directly, relationship was presented firstly between the spatial distribution of sound pressure and the intensity of schlieren image getting by Zernike phase contrast system based on the acousto-optic effect. Then the real-time sound image of focused ultrasound was obtained by the schlieren system. Due to the physical property of schlieren system, the spatial sound pressure distribution of a concave spherical shell focused ultrasonic transducer could be reconstructed by using a back-projection reconstruction algorithm lastly. According to analysis,when the electric power is 12 W, the horizontal size of reconstruction focal region is 0.25 mm closest to the theoretical 0.15 mm and when the electric power is 30 W, the acoustic axis size of reconstruction focal region is 1.35 mm closest to the theoretical 1.4 mm. Results compared with the theoretical sound pressure distribution of the spherical shell transducer show that this method has certain feasibility for ultrasonic transducer measurement.
  • [1]Jiang Xueping, Chen Xi, Qian Menglu. Theoretical and experimental investigation of imaging the acoustic fields by schlieren techniques[J]. Technical Acoustics, 2011, 30(05): 1-4.
    姜学平, 程茜, 钱梦騄. 纹影法对声场成像的理论和实验研究[J]. 声学技术, 2011, 30(05): 1-4.
    [2]Torras-Rosell A,  Barrera-Figuera S,  Jacobsen F. Sound field reconstruction using acousto-optic tomography[J]. Acoustical Society of America, 2012, 131(5): 3786-3793.
    [3]Kudo N,  Sanbonmatsu Y,  Shimizu K. Microscopic visualization of high-frequency ultrasound fields using a new method of schlieren photography[C]. US: IEEE, 2010: 829-832.
    [4]Chinnery P A, Humphrey V F,  Beckett C. The schlieren image of two-dimensional ultrasonic fields and cavity resonances[J]. Acoustical Society of America, 1997,101(1): 250-256.
    [5]Zhu Weimin. A study on measurement of ultrasound field based on optical technology[J]. Measurement Technique, 2013, 5: 16-18.
    朱卫民. 一种基于光学技术的超声场测量方法研究[J]. 计量技术, 2013, 5: 16-18.
    [6]Remenieras  J P,  Matar O B, Calle S,  et al. Acoustic pressure measurement by acousto-optic tomography[C]. US: IEEE, 2001: 505-508.
    [7]Settles G S. Schlieren and shadowgraph techniques: visualizing phenonmena in transparent media[M]. New York: Springer, 2001: 25-28.
    [8]Moller D,  Degen N,  Dual J. Schlieren visualization of ultrasonic standing waves in mm-sized chambers for ultrason.ic particle manipulation[J]. Journal of Nanobiotechnology, 2013, 11(1): 1-5.
    [9]Unverzagt C,  Olfert S,  Henning B. A new method of spatial filtering for schlieren visualization of ultrasound wave fields[J]. Physics Procedia, 2010, 3(1): 935-942.
    [10]Zhu Guozhen, Lu Kean, Fu Deyong, et al.Experiments on two kinds of threshold for the acoustic pressure gradient of a schlieren system[J]. Measurement Science and Technology, 2002, 13(4): 483-487.
    [11]Brownlee C, Pegoraro V,  Shankar S, et al. Physically-based interactive flow visualization based on schlieren and interferometry experimental techniques[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(11): 1574-1586.
    [12]Su Xianyu,Li Jitao,Cao Yiping,et al. Information optics[M].2nd ed.  Beijing: Science Press, 2011: 207-208.
    苏显渝,李继陶,曹益平,等.信息光学[M].2版.北京:科学出版社, 2011, 207-208.
    [13]Shan Zijuan, Wang Dingxing, Li Zhengzhi. Properties of a laser schlieren system[J]. Acta Optica Sinica, 1984, 4(10): 880-886.
    单子娟, 王定兴, 李正直. 一种激光纹影仪的光学特性[J]. 光学学报, 1984, 4(10): 880-886.
    [14]Harvey G,  Gachagan A,  Mcnab A. Ultrasonic field measurement in test cells combining the acousto-optic effect, laser interferometry & tomography[J]. Proc. IEEE Ultrason. Symp, 2004, 2: 1038-1041.
    [15]Holm A,  Persson H W,  Lindstrom K. Optical diffraction tomography of ultrasonic fields with Algebraic Reconstruction Techniques[J]. Proc. IEEE Ultrason. Symp, 1990, 2: 685-688.
    [16]Huang Liyu. Basic principle of medical imaging[M]. Beijing: Publishing House of Electronics Industry, 2009: 99-102.
    黄力宇.医学成像的基本原理[M]. 北京: 电子工业出版社, 2009: 99-102.
    [17]Zhang Dejun. High intensity focused ultrasound transducer[J]. Chinese Journal of Ultrasound Diagnosis, 2000, 1(2): 1-4.
    张德俊.高强度聚焦超声换能器[J].中国超声诊断杂志, 2000, 1(2): 1-4.
  • Related Articles

    [1]WANG Changmiao, LI Hui, SU Chenbo, WU Yuntao. Convex optimization-based mesoscopic 3D reconstruction method for fluorescence-free light fields[J]. Journal of Applied Optics, 2024, 45(6): 1179-1188. DOI: 10.5768/JAO202445.0602002
    [2]YU Zihao, LIU Jin, YANG Haima, LI Meiying, XU Wei, XU Bin. Research on 3D measurement and reconstruction of high-precision profile of multi-frequency grating object[J]. Journal of Applied Optics, 2020, 41(3): 580-585. DOI: 10.5768/JAO202041.0303006
    [3]WANG Danping, XIE Mengyuan, LI Zhibin, ZHU Wenguo, YU Jianhui, CHEN Zhe, ZHANG Jun. Research on reconstruction algorithm of lensless microscopic imaging[J]. Journal of Applied Optics, 2019, 40(4): 589-595. DOI: 10.5768/JAO201940.0402002
    [4]QU Hui, ZHOU Wen-jing, WU Xiao-yan, LI Hai-peng. Two-step iterative shrinkage reconstruction of single in-line hologram[J]. Journal of Applied Optics, 2013, 34(5): 796-801.
    [5]WANG Bo, XUE Ying, YU Hui-tian. Two analytical reconstruction algorithms for spiral cone-beam computerized tomography[J]. Journal of Applied Optics, 2011, 32(5): 894-898.
    [6]ZHANG Yi-fei, LI Liang-fu, WANG Jiao-ying, ZHENG Bao-zhong. Image enhancement algorithm based on super resolution reconstruction[J]. Journal of Applied Optics, 2011, 32(2): 250-255.
    [7]XU Qing, CAO Na, HEI Dong-wei, CAO Liang, MA Ji-ming, ZHANG Zhan-hong, HAN Chang-cai, LEI Lan. Reconstruction algorithm of particle fields digital holographic diagnosis[J]. Journal of Applied Optics, 2010, 31(6): 969-973.
    [8]CHANG Fang-Fei, ZHANG Zhi-Min. Error analysis of common iterative reconstruction algorithmsin optical chromatographic technique[J]. Journal of Applied Optics, 2009, 30(4): 616-621.
    [9]LI Su-ning, ZHU Ri-hong, LI Jian-xin, WANG Yan. Method of reconstruction on Fourier-Transform spectroscopy[J]. Journal of Applied Optics, 2009, 30(2): 268-272.
    [10]DING Ze-hui, CHEN Shao-hua. Image reconstruction algorithm for CT from fewer views based on simulated annealing genetic algorithm[J]. Journal of Applied Optics, 2006, 27(6): 520-524.
  • Cited by

    Periodical cited type(2)

    1. 刘海秋,高彦伟,闫得杰. 基于遥感图像及工程参数的全局像移探测算法. 应用光学. 2019(05): 838-846 . 本站查看
    2. 刘铁英,巩红晓. 科技期刊三线表使用中的常见问题. 学报编辑论丛. 2016(00): 131-135 .

    Other cited types(1)

Catalog

    Article views (1640) PDF downloads (161) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return