Long Qing-yun, Hu Su-mei, Peng Zhi-ping. Power conversion efficiency analysis of distributed backward pumped fibre Raman amplifier[J]. Journal of Applied Optics, 2015, 36(3): 486-491. DOI: 10.5768/JAO201536.0308002
Citation: Long Qing-yun, Hu Su-mei, Peng Zhi-ping. Power conversion efficiency analysis of distributed backward pumped fibre Raman amplifier[J]. Journal of Applied Optics, 2015, 36(3): 486-491. DOI: 10.5768/JAO201536.0308002

Power conversion efficiency analysis of distributed backward pumped fibre Raman amplifier

More Information
  • der to analyze the power conversion efficiency of backward pumped fibre Raman amplifier(FRA), by combining the shooting method with the RungeKutta method for solving differential coupling equations of backward pumped FRA, the effect of every parameter on backward pumped FRA-s power conversion efficiency was detailedly investigated. It is found that the power conversion efficiency is increasing with the increase of fibre length, until it reaches the maximum; the power conversion efficiency increases when the initial signal power or Raman gain coefficient or the attenuation coefficient of signal is larger, and it decreases when the fibre efficient area or the attenuation coefficient of pump or the pump and signal frequency ratio is larger; the relation between power conversion efficiency and initial pump power is para-curve. The conclusions are helpful to,further study the backward pumped FRA.
  • [1]Long Qingyun,Wu Tingwan,Hu Sumei, et al.Threshold characteristics of forward-pumped fiber Raman amplifier[J]. Laser & Optoelectronics Progress,2014,51(3):030603-1-4.
    龙青云,吴庭万,胡素梅,等.同向抽运光纤拉曼放大器的阈值特性[J].激光与光电子学进展,2014,51(3):030603-1-4.
    [2]Leng Jinyong, Wu Wuming, Chen Shengpin,et al. Suppression of stimulated brillouin scattering in single-frequency Raman fiber amplifiers[J]. Chinese Journal of Lasers,2010,37(9):2334-2339.
    冷进勇,吴武明,陈胜平,等.单频拉曼光纤放大器中受激布里渊散射的抑制[J].中国激光,2010,37(9):2334-2339.
    [3]Deng Huaqiu, Long Qingyun.Theoretical analysis on SRS in single-mode fibers pumped by laser of 1 064nm[J]. Acta Photonica Sinica,2008,37(1):46-50.
    邓华秋,龙青云.1 064 nm激光抽运单模光纤受激喇曼散射的理论分析[J].光子学报,2008,37(1):46-50.
    [4]Deng Huaqiu, Long Qingyun.Analysis of the gain characteristics of backward-pumped fibre Raman amplifier[J].Acta Photonica Sinica,2006,35(10):1534-1537.
    邓华秋,龙青云.反向抽运光纤喇曼放大器增益特性分析[J],光子学报,2006,35(10):1534-1537.
    [5]Mei Jinjie, Liu Deming, Huang Dexiu.Analysis of power conversion efficiency of fiber Raman amplifier[J].Laser  Technology,2003,27(4):349-351.
    梅进杰,刘德明,黄德修.光纤拉曼放大器的功率转换效率分析[J].激光技术,2003,27(4):349-351.
    [6]Liu Qiang, Cheng Xinlu,Xin Xiangjun,et al.Analysis of Ramman fiber amplifier-s power conversion efficiencies base on experiment[J].Research and Exploration in Laboratory, 2010, 29(6):12-23.
    刘强,程新路,忻向军,等.喇曼放大器功率转换效率实验分析[J].实验室研究与探索,2010,29(6):12-23.
    [7]Rekas M, Zimer H, Tünnermann A. Over 200 W average power tunable Raman amplifier based on fused  silica step index fiber[J]. Applied  Physics B,2012,107:711-716.
    [8]Chestnut D A, Dematos C J S, Reeves-hall P C,et al.High efficiency, dual-wavelength fibre Raman pump laser for U-band fibre Raman amplifiers[J].OpticL Quantum Electronics  Letters,2002,34:1025-1030.
    [9]Islam M N. Raman amplifiers for telecommunications[J]. Journal of Selected Topics in Quantum Electronics, 2002, 8(3):548-559.
    [10]Long Qingyun. Design of fibre Raman amplifier in ultra long haul system[J].Journal of Maoming University,2007,17(6):49-51.
    龙青云.超长距离系统中光纤拉曼放大器的设计[J].茂名学院学报,2007,17(6):49-51.
     [11]Deng Huaqiu, Long Qingyun, Wu Junfang. Gain characteristics of forward pumped Raman fiber amplifier[J].Journal of South China University of Technology: Natural Science Edition,2005, 33(10):44-47.
    邓华秋,龙青云,吴俊芳.同向泵浦喇曼光纤放大器的增益特性[J].华南理工大学学报:自然科学版,2005,33(10):44-47.
     [12]Xu Jia, Wang Lei, Liu Jiang, et al. Narrow line-width 165 3 nm Raman fiber amplifiers[J].Chinese Journal of Lasers, 2013, 40(6): 0602001-1-5.
    徐佳,汪磊,刘江,等.1 653 nm窄线宽拉曼光纤放大器[J].中国激光,2013,40(6):0602001-1-5.
  • Related Articles

    [1]HAN Manlin, HAN Sen, WU Quanying, ZHANG Linghua, SHEN Yuhang, YANG Ying, GUO Jingming. Improved double-pass measurement method for detecting right-angle errors of corner cube prisms[J]. Journal of Applied Optics, 2025, 46(1): 148-155. DOI: 10.5768/JAO202546.0103004
    [2]HU Jingsen, HUANG Min, GAO Han. Error analysis on dihedral angle of corner-cube reflectors in Fourier transform spectrometer[J]. Journal of Applied Optics, 2022, 43(5): 959-966. DOI: 10.5768/JAO202243.0503005
    [3]HAN Ying, XIANG Jiansheng. Assembly and adjustment method of infrared optical lens group based on OptiCentric center-deviation measuring instrument[J]. Journal of Applied Optics, 2022, 43(4): 726-731. DOI: 10.5768/JAO202243.0404002
    [4]YUAN Qun, JI Wen, GAO Zhishan. Geometric characteristics and error analysis of standard spherical lens[J]. Journal of Applied Optics, 2020, 41(4): 858-868. DOI: 10.5768/JAO202041.0405002
    [5]MA Jun, WANG Chenglong, XIA Yangjun. Modeling and simulation of linear Fresnel reflector system based on SolTrace[J]. Journal of Applied Optics, 2019, 40(4): 676-680. DOI: 10.5768/JAO201940.0405003
    [6]Zhan Qianjing, Liu Xiaoqin, Hou Zaihong, Wu Yi. Method for realizing Tracepro redevelopment based on DDE technology[J]. Journal of Applied Optics, 2018, 39(5): 729-734. DOI: 10.5768/JAO201839.0505005
    [7]Hao Chunyan, Gao Tianyuan, Lao Dabao, Zhou Weihu, Zhu Qifan. Error analysis for large-scale planar laser scanning and compensation system[J]. Journal of Applied Optics, 2018, 39(1): 124-129. DOI: 10.5768/JAO201839.0107002
    [8]WANG Xiao-kun. Large convex mirror measurement by subaperture stitching interferometry[J]. Journal of Applied Optics, 2013, 34(1): 95-100.
    [9]LI Zhi-dong, DENG Shi-guang, SANG Feng, GUO Jing-ping. Nonlinear error analysis of homodyne Mach-Zehnder interferometer[J]. Journal of Applied Optics, 2011, 32(4): 730-735.
    [10]YANG Peng-li. Elimination method of adjustment error in measurement of aspheric optical elements[J]. Journal of Applied Optics, 2006, 27(supp): 58-60.
  • Cited by

    Periodical cited type(3)

    1. 李亚红,李满,魏文浩,褚金奎,邹念育,姜珊. 基于多变量纳米线栅复合结构的可见光偏振调控. 应用光学. 2024(04): 700-708 . 本站查看
    2. 李春燕,张亦舒,侯少杰,李春玲,李晓诚,寇生中. 传统光栅制备技术及非晶合金光栅制备研究进展. 稀有金属. 2024(12): 1766-1780 .
    3. 齐耀,刘子阳,侯宇田,于晓慧,杨宾. 光谱分频型PV/T系统中纳米颗粒优化分析. 应用光学. 2023(04): 699-710 . 本站查看

    Other cited types(2)

Catalog

    Article views (1487) PDF downloads (79) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return