an Le-le, Li Hui, Qiu Ju-neng, Liang Ping. Image quality assessment method based on regional contrast and structural similarity[J]. Journal of Applied Optics, 2015, 36(1): 58-63. DOI: 10.5768/JAO201536.0102002
Citation: an Le-le, Li Hui, Qiu Ju-neng, Liang Ping. Image quality assessment method based on regional contrast and structural similarity[J]. Journal of Applied Optics, 2015, 36(1): 58-63. DOI: 10.5768/JAO201536.0102002

Image quality assessment method based on regional contrast and structural similarity

More Information
  • Received Date: August 24, 2014
  • Revised Date: November 04, 2014
  • Among numerous image quality assessment(IQA) methods, the structural similarity (SSIM) algorithm is simple, high efficient and accurate. However, it often does not work well when there is regional distortion or cross distortion in the image. To deal with the problem that SSIM algorithm treats the different regions of the image identically, we took human visual characteristics in spatial domain into consideration and put forward an improved IQA method based on regional contrast and structural similarity(RCSSIM). The new algorithm combines regional contrast with structural similarity, weighs and normalizes the original SSIM index to a regional contrast structural similarity metric between the reference image and the distortion image to assess the image quality. The experiment results on LIVE image database show that the Pearson linear correlation coefficient(PLCC) of the new algorithm increases by about 0.015 and the root-mean-square error decreases by about 0.55 compared with the SSIM algorithm. It indicates that the evaluation result of RCSSIM algorithm is more consistent with human visual system(HVS) characteristics and is more effective than the SSIM algorithm.
  • [1]Wei Xuehui, Li Junli, Chen Gang. A perception based image quality assessment model[J]. Journal of Computer-Aided Design & Computer Graphics, 2007, 19(12):1540-1545.
    韦学辉,李均利,陈刚. 一种图像感知质量评价模型[J]. 计算机辅助设计与图形学学报,2007,19(12):1540-1545.
    [2]Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004,13(4):600-612.
    [3]Wang Z, Simoncelli E P, Bovik A C. Multiscale structural similarity for image quality assessment[J]. IEEE Computer Society Press,2003,2(11): 1398-1402.
    [4] Liu Anmin, Lin Weisi, Narwaria M. Image quality assessment based on gradient similarity[J]. IEEE Transactions on Image Processing, 2012, 21(4):1500-1512.
    [5]Wang Z, Li Q. Information content weighting for perceptual image quality assessment[J]. IEEE Transactions on Image Processing, 2011,20(5):1185-1198.
    [6]Zhang Lin, Zhang D, Mou Xuanqin, et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386.
    [7] Zhang Lin, Li Hongyu. SR-SIM: A fast and high performance IQA index based on spectral residual[J]. IEEE International Conference on Image Processing, 2012,19(9):1473-1476.
    [8] Sheikh H R, Sabir M F, Bovik A C. A statistical evaluation of recent full reference image quality assessment algorithms[J]. IEEE Transactions on Image Processing, 2006,15(11):3440-3451.
    [9]Zhang Yatao, Ji Shupeng, Wang Qiangfeng, et al. Definition evaluation algorithm based on regional contrast[J]. Journal of Applied Optics, 2012,33(2): 293-299.
    张亚涛,吉书鹏,王强锋,等. 基于区域对比度的图像清晰度评价算法[J]. 应用光学,2012,33(2):293-299.
     [10]Yang Chunling, Xu Xiaolin. Structural similarity highlighting edge regions for image quality assessment[J]. Journal of Image and Graphics, 2011,16(12): 2133-2139.
    杨春玲,徐小琳. 重视边缘区域的结构相似度图像质量评价[J]. 中国图象图形学报,2011,16(12):2133-2139.
     [11]Sheikh H R, Wang Z, Cormack L, et al. LIVE image quality assessment database release 2, 2004 [EB/OL]. Austin: The University of Texas, 2005(2012-02-13)[2004-0701].http://live.ece.utexas.edu/research/quality.
    [12]Zhang Lin, Zhang D, Mou Xuanqin, et al. A comprehensive evaluation of full reference image quality assessment algorithms[J]. IEEE International Conference on Image Processing,2012,19(9):1477-1480.

     
  • Related Articles

    [1]HE Xiang. Electroluminescence image enhancement technology of half-cut photovoltaic module based on DCGANs[J]. Journal of Applied Optics, 2023, 44(2): 314-322. DOI: 10.5768/JAO202344.0202003
    [2]Wang Fan, Ni Jinping, Dong Tao, Guo Rongli. No-reference image quality assessment method based on visual attention mechanism and sharpness metric approach[J]. Journal of Applied Optics, 2018, 39(1): 51-56. DOI: 10.5768/JAO201839.0101009
    [3]Yao Juncai. Study on measuring human luminance and color contrast sensitivity visual characteristics and their models[J]. Journal of Applied Optics, 2016, 37(6): 880-886. DOI: 10.5768/JAO201637.0603002
    [4]WU Feng-bo, WANG Feng. Wavelet transform digital image watermarking algorithms based on HVS[J]. Journal of Applied Optics, 2014, 35(2): 254-259.
    [5]HUA Wen-shen, YANG Jia, LIU Xun, MA Zuo-hong. Camouflage assessment based on hyperspectral characteristics[J]. Journal of Applied Optics, 2013, 34(6): 964-967.
    [6]JIN Peng-fei. Electro-optic characteristic of liquid crystal[J]. Journal of Applied Optics, 2013, 34(1): 143-147.
    [7]ZHANG Ya-tao, JI Shu-peng, WANG Qiang-feng, GUO Zheng-yu. Definition evaluation algorithm based on regional contrast[J]. Journal of Applied Optics, 2012, 33(2): 293-299.
    [8]WANG Qiao-bin, REN Hao, LUO Yu-qiang, FAN Li-wei. Three dimension characteristic measurement of LED based on LabVIEW[J]. Journal of Applied Optics, 2009, 30(3): 460-464.
    [9]SONG Qing, HUANG Mei-qian, LI Guan-qi. A Study on Photosensitivity Characteristics of Ba1-xSrxNbyTi1-yO3 Thin Film on SiO2/Si Substrate[J]. Journal of Applied Optics, 2005, 26(5): 45-049.
    [10]HAN Bao-jun, BAI Li-ping, LIU Shang-qian, WU Zhi-peng. A Method for Cannon Barrel Image Enhancement Based on Human Eye Visual Characteristics[J]. Journal of Applied Optics, 2005, 26(1): 36-38.
  • Cited by

    Periodical cited type(4)

    1. 杨浩,占春连,孙广尉,朱周洪,王加朋,杜继东,周国澳,姜葵. 基于同步辐射的真空紫外光谱响应度校准装置研究. 红外与激光工程. 2024(12): 148-156 .
    2. 孙广尉,杜继东,李世伟,邓培,程前,黄亮,周国澳,杨海生. 真空紫外探测器关键参数校准装置. 宇航计测技术. 2022(05): 23-28 .
    3. 谭鹏,李玲,吕雪松. 基于紫外成像的电晕放电检测技术研究. 电工技术. 2021(12): 75-77+119 .
    4. 叶井飞,朱润徽,马梦聪,丁天宇,宋真真,曹兆楼. 紫外宽光谱大相对孔径光学系统设计. 应用光学. 2021(05): 761-766 . 本站查看

    Other cited types(2)

Catalog

    Article views (2110) PDF downloads (268) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return