Citation: | LI Yahong, LI Man, WEI Wenhao, CHU Jinkui, ZOU Nianyu, JIANG Shan. Polarization control of visible light based on composited multivariable nanowire gratings structure[J]. Journal of Applied Optics, 2024, 45(4): 700-708. DOI: 10.5768/JAO202445.0401005 |
The polarization regulation technology can effectively fulfill the requirements of rapid and precise identification and detection in the visible light range for polarization microscopes. The key lies in enhancing the polarization extinction ratio and achieving the optimal utilization of light. A composited multivariable nanowire gratings structure was designed based on the equivalent medium theory and the resonance enhancement mechanism of the resonator. The relationship between the structure parameters and polarization property of the structure was analyzed by numerical simulation using the finite-difference time-domain (FDTD) method, which could realize the polarization regulation function of wide angle incidence, high transmittance and high extinction ratio in the visible light band. Combined with the existing conditions of the laboratory, the nano-imprint technology was used for sample preparation and experimental verification. The experimental and simulation results show that the transmittance and extinction ratio of TM mode are higher than 60% and 35 dB respectively within the incident angle of ±35°, and the error range is about 4% at the vertical incidence of 532 nm laser source. Compared with polarizers in existing polarization microscopes, the designed structure of polarization regulation ensures high transmittance while increasing the extinction ratio by 1.5 times.
[1] |
马颖娴, Chayanis Sutcharitchan, 蒙倩, 等. 基于偏振光显微镜与λ波长补偿器联用在生药显微鉴别中的应用研究[J]. 世界科学技术-中医药现代化, 2022, 24(9): 3364-3374.
MA Yingxian, CHAYANIS Sutcharitchan, MENG Qian, et al. Application of polarized light microscope and λ wavelength compensator in the microscopic identification of crude drugs[J]. World Science and Technology-Modernization of Traditional Chinese Medicine, 2022, 24(9): 3364-3374.
|
[2] |
蔡梦玲. 偏振光显微镜在木斯塘档案纸张纤维检测中的运用[J]. 文物保护与考古科学, 2021, 33(2): 52-60.
CAI Mengling. Application of polarized light microscope in the detection of paper fibers in Mustang archives[J]. Conservation and Archaeological Science, 2021, 33(2): 52-60.
|
[3] |
汪志琦, 郭宝华, 徐军. 偏振光学显微成像技术在高分子结晶结构表征中的应用[J]. 高分子学报, 2023, 54(1): 130-150.
WANG Zhiqi, GUO Baohua, XU Jun. Application of polarization optical microscopy in characterization of polymer crystal structure[J]. Acta Polymerica Sinica, 2023, 54(1): 130-150.
|
[4] |
RAMELLA-ROMAN J C. SAYTASHEV I, PICCINIC M. A review of polarization-based imaging technologies for clinical and preclinical applications[J]. Journal of Optics, 2020, 22(12): 123001-. doi: 10.1088/2040-8986/abbf8a
|
[5] |
IVANOV I E, YEH L H, PEREZ-BERMEJO J A, et al. Correlative imaging of the spatio-angular dynamics of biological systems with multimodal instant polarization microscope[J]. Biomedical Optics Express, 2022, 13(5): 3102-3119. doi: 10.1364/BOE.455770
|
[6] |
吴芳, 步扬, 刘志帆, 等. 深紫外双层金属光栅偏振器的设计与分析[J]. 物理学报, 2021, 70(4): 184-194.
WU Fang, BU Yang, LIU Zhifan, et al. Design and analysis of deep ultraviolet double-layer metal grating polarizer[J]. Acta Physica Sinica, 2021, 70(4): 184-194.
|
[7] |
钟可君, 伏燕军, 江光裕. 一种提高OLED基底出光效率的亚波长光栅设计[J]. 应用光学, 2018, 39(5): 701-706.
ZHONG Kejun, FU Yanjun, JIANG Guangyu. Design of sub-wavelength grating for improving efficiency of OLED substrate[J]. Journal of Applied Optics, 2018, 39(5): 701-706.
|
[8] |
SASAKI T, KUSHIDA H, SAKAMOTO M, et al. Liquid crystal cells with subwavelength metallic gratings for transmissive terahertz elements with electrical tenability[J]. Optics Communications, 2018, 431: 63-67.
|
[9] |
MINH D N, DASOL L, JUNSUK R. Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths[J]. Scientific Reports, 2017, 7(1): 2611. doi: 10.1038/s41598-017-02847-1
|
[10] |
ITSUNARI Y, JUNJI N, MITSUNORI S. Modeling, fabrication, and characterization of tungsten silicide wire-grid polarizer in infrared region[J]. Applied Optics, 2008, 47(26): 4735-4738. doi: 10.1364/AO.47.004735
|
[11] |
WEBER T, KÄSEBIER T, SZEGHALMI A, et al. High aspect ratio deep UV wire grid polarizer fabricated by double patterning[J]. Microelectronic Engineering, 2012, 98: 433-435. doi: 10.1016/j.mee.2012.07.044
|
[12] |
HE W, FENG Y, HU Z, et al. Sensors with multifold nanorod metasurfaces array based on hyperbolic metamaterials[J]. IEEE Sensors Journal, 2020, 20(4): 1801-1806. doi: 10.1109/JSEN.2019.2948962
|
[13] |
AHN S, LEE K, KIM J. Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography[J]. Nanotechnology, 2005, 16(9): 1874-1877. doi: 10.1088/0957-4484/16/9/076
|
[14] |
杨江涛, 王健安, 王银, 等. 亚波长金属光栅偏振器制备技术研究[J]. 红外技术, 2021, 43(1): 8-12.
YANG Jiangtao, WANG Jian'an, WANG Yin, et al. Study on preparation technology of subwavelength metal grating polarizer[J]. Infrared Technology, 2021, 43(1): 8-12.
|
[15] |
WANG Y, FU X H, CHEN Y Y, et al. The development progress of surface structure diffraction gratings: from manufacturing technology to spectroscopic applications[J]. Applied Sciences, 2022, 12(13): 6503. doi: 10.3390/app12136503
|
[16] |
褚金奎, 王倩怡, 王志文, 等. 双层金属纳米光栅的TE偏振光异常透射特性[J]. 物理学报, 2015, 64(16): 274-280. doi: 10.7498/aps.64.164206
CHU Jinkui, WANG Qianyi, WANG Zhiwen, et al. Abnormal transmission characteristics of TE polarized light in double-layer metal nanogratings[J]. Acta Physica Sinica, 2015, 64(16): 274-280. doi: 10.7498/aps.64.164206
|
[17] |
WU C L, HSUEH C H, LI J H. Surface plasmons excited by multiple layer grating[J]. Optics Express, 2019, 27(2): 1660-1671. doi: 10.1364/OE.27.001660
|
[18] |
JING X F, JIN Y X. Transmittance analysis of diffraction phase grating[J]. Applied Optics, 2011, 50(9): C11-C18. doi: 10.1364/AO.50.000C11
|
[19] |
RAKIC A D. Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum[J]. Applied Optics, 1995, 34(22): 4755-4767. doi: 10.1364/AO.34.004755
|
[20] |
XU C, XU Q, MA J, et al. Research on the polarization and temperature characteristics of subwavelength aluminum gratings[J]. Journal of Optics, 2014, 16(10): 105711. doi: 10.1088/2040-8978/16/10/105711
|
[21] |
康果果, 谭峤峰, 陈伟力, 等. 亚波长金属线栅的设计、制备及偏振成像实验研究[J]. 物理学报, 2011, 60(1): 337-343. doi: 10.7498/aps.60.014218
KANG Guoguo, TAN Qiaofeng, CHEN Weili, et al. Experimental study on the design, fabrication and polarization imaging of subwavelength wire grating[J]. Acta Physica Sinica, 2011, 60(1): 337-343. doi: 10.7498/aps.60.014218
|
[22] |
MOHARAM G M, GRANN B E, POMMET A D, et al. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. Journal of the Optical Society of America, 1995, 12(5): 1068-1076. doi: 10.1364/JOSAA.12.001068
|
[23] |
NAVARRO E, GIMENA B, CRUZ J. Modelling of periodic structures using the finite difference time domain method combined with the Floquet theorem[J]. Electronics Letters, 1993, 29(5): 446-447. doi: 10.1049/el:19930298
|
[24] |
SUN J G, ZHENG C X. Numerical scattering analysis of TE plane waves by a metallic diffraction grating with local defects[J]. Journal of the Optical Society of America. A-Optics, Image Science, and Vision, 2009, 26(1): 156-162. doi: 10.1364/JOSAA.26.000156
|
[25] |
FIONNUALA M, JING Q, KELSEY G, et al. Structural, optical, and electrical properties of silver gratings prepared by nanoimprint lithography of nanoparticle ink[J]. Applied Surface Science, 2020, 537: 147892.
|
[26] |
ELISEEV A A, RAVODINA V O. Optics and spectroscopy principle for the design of interference light filters with two multilayers[J]. Russian Physics Journal, 1999, 41(10): 996-1000.
|
[27] |
HONKANEN M, KETTUNEN V, KUITTINEN M, et al. Inverse metal-stripe polarizers[J]. Applied Physics B-Lasers and Optics, 1999, 68(1): 81-85. doi: 10.1007/s003400050590
|
[28] |
EBBESEN W T, LEZEC J H, GHAEMI F H, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature: International Weekly Journal of Science, 1998, 391(6668): 667.
|
[29] |
谈春雷, 易永祥, 汪国平. 一维金属光栅的透射光学特性[J]. 物理学报, 2002(5): 1063-1067. doi: 10.3321/j.issn:1000-3290.2002.05.026
TAN Chunlei, YI Yongxiang, WANG Guoping. Transmission optical properties of one-dimensional metal grating[J]. Acta Physica Sinica, 2002(5): 1063-1067. doi: 10.3321/j.issn:1000-3290.2002.05.026
|
[30] |
CAO Q, LALANNE P. Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits[J]. Physical Review Letters, 2002, 88(5): 057403. doi: 10.1103/PhysRevLett.88.057403
|
[31] |
孙宝玉, 许济琛, 谷岩, 等. 振动辅助纳米压印制备大面积光栅结构[J]. 应用光学, 2022, 43(1): 124-130. doi: 10.5768/JAO202243.0105001
SUN Baoyu, XU Jichen, GU Yan, et al. Preparation of large-area grating structure by vibration-assisted nanoimprint[J]. Journal of Applied Optics, 2022, 43(1): 124-130. doi: 10.5768/JAO202243.0105001
|
1. |
孙宝玉,许济琛,谷岩,林洁琼,李洁. 振动辅助纳米压印制备大面积光栅结构. 应用光学. 2022(01): 124-130 .
![]() | |
2. |
白旭峰,杨艳丽,曲保平. 正入射光栅衍射现象实验探究. 现代盐化工. 2022(02): 38-40 .
![]() | |
3. |
吴贺利,杨帆,张翼,罗晨晖,吴满,麻友良. 光伏电池表面凹坑阵列光反射特性分析. 激光杂志. 2022(11): 180-184 .
![]() | |
4. |
汪勇,冯奇斌,郭敏,王梓,吕国强. 用于MiniLED背光模组的亮度增强薄膜设计与制备. 应用光学. 2019(05): 887-893 .
![]() |