Research on properties of commonly-used phosphors for low-level-light image intensifiers
-
摘要: 荧光粉是微光像增强器荧光屏的关键材料,可将电子图像转换为可见光学图像,其性能对像增强器的分辨力、发光光谱、调制传递函数、余辉等性能有重要影响。针对国内外目前像增强器的发展情况,就国内外像增强器荧光屏常用的P20((Zn,Cd)S∶Ag)、P22(ZnS∶Cu,Al)、P31(ZnS∶Cu)、P43(Gd2O2S∶Tb)和P45(Y2O2S∶Tb)开展相应的性能对比研究,分别对这5种荧光粉的物相结构、光谱特性、发光效率及分辨力等性能进行了表征,分析了不同种类荧光粉的适用条件。结果表明:这5类常用荧光粉对于像增强器的不同性能提升各有贡献,其中分辨力较高的为P43荧光粉,发光效率较高的为P22荧光粉,而人眼观测舒适度最好的则为P45荧光粉。鉴于对微光像增强器高性能的要求,在选用微光像增强器用荧光粉时可选用综合性能较为优越的P22和P43荧光粉,也可根据像增强器的具体性能要求及实际使用需求选用合适的荧光粉种类。Abstract: The phosphors is the key material of the fluorescent screen of low-level-light image intensifier, which can transform the electronic images into the visible optical images. Its performances have an important influence on the resolution, luminescence spectrum, modulation transfer function and afterglow of the image intensifier. In view of the current development of image intensifier at home and abroad, a comparative performance study was carried out on the commonly-used P20 ((Zn, Cd) S: Ag), P22 (ZnS: Cu, Al), P31 (ZnS: Cu), P43 (Gd2O2S: Tb) and P45 (Y2O2S: Tb) for fluorescent screen of image intensifier. The phase structure, spectral characteristics, luminous efficiency and resolution of these five types of phosphors were characterized respectively, and the applicable conditions of different kinds of phosphors were analyzed. The results show that these five types of commonly-used phosphors contribute to the improvement of different performances of image intensifier. Among which, the P43 phosphors has higher resolution, the P22 phosphors has higher luminous efficiency, and the P45 phosphors provides the best observation comfort for the human eyes. In view of the requirements for the high performance of the low-level-light image intensifier, the P22 and the P43 phosphors with superior comprehensive performance can be selected when selecting phosphors for the low-level-light image intensifier, and the appropriate types of phosphors can also be selected according to the specific performance requirements and actual use requirements of image intensifier.
-
Key words:
- low-level-light image intensifier /
- fluorescent screen /
- phosphor /
- optical properties
-
表 1 发光效率测试结果
Table 1 Measurement results for luminous efficiency
编号 屏号 发光效率/(lm/W) 均值/(lm/W) P20 1 15.4 15.45 2 15.2 3 15.7 4 15.5 P22 1 18.9 18.85 2 18.8 3 19 4 18.7 P31 1 9.6 9.8 2 9.8 3 10 4 9.9 P43 1 13.4 13.2 2 13.2 3 13 4 13.2 P45 1 8 7.8 2 7.5 3 7.8 4 7.9 表 2 荧光屏分辨力测试结果
Table 2 Measurement results for resolution of fluorescent screen
编号 分辨力/(lp/mm) 编号 分辨力/(lp/mm) P20-1 92.2 P20-2 92.4 P22-1 94.8 P22-2 94.4 P31-1 94.6 P31-2 94.4 P43-1 95.8 P43-2 96.2 P45-1 94.4 P45-2 94.6 表 3 像管分辨力测试结果
Table 3 Measurement results for resolution of bare pipe of image intensifier
编号 分辨力/(lp/mm) 编号 分辨力/(lp/mm) P20-1 57 P20-2 58 P22-1 60 P22-2 59 P31-1 58 P31-2 57 P43-1 67 P43-2 65 P45-1 61 P45-2 61 表 4 荧光粉光谱特性测试结果
Table 4 Measurement results for spectral characteristics of phosphor
编号 发光
亮度L色阶坐标 主波长/nm 峰值
波长/nm半波宽/nm 显色指数Ra D10 D50 D90 x y P20 73.311 0.3404 0.5928 555.7 539.1 85.9 23.2 1.38 2.45 4.25 P22 89.191 0.2996 0.6192 548.3 534.8 75.9 15.8 1.36 2.32 3.92 P31 70.565 0.2837 0.6062 544.4 530.1 74.7 19.7 1.33 2.5 4.47 P43 114.11 0.3462 0.5887 556.6 544.1 2.9 23.9 1.14 1.93 3.27 P45 53.582 0.3774 0.6159 560.7 544.2 2.9 2 1.47 2.68 4.77 表 5 像增强器用荧光粉主要指标
Table 5 Key indicators of phosphor used for image intensifier
项目 P20 P22 P31 P43 P45 备注 荧光屏发光效率/(lm/W) 15.45 18.85 9.8 13.2 7.8 制成荧光屏后测试 分辨力/(lp/mm) 92 94 94 95 94 制成荧光屏后测试 发光颜色 黄绿 黄绿(绿) 黄绿(绿) 黄绿 白色 发光亮度/(cd/m2) 73.311 89.191 70.565 114.11 53.582 色阶坐标$\dfrac{x}{y} $ $\dfrac{0.340\;4}{0.592\;8} $ $\dfrac{0.299\;6}{0.619\;2} $ $\dfrac{0.283\;7}{0.606\;2} $ $\dfrac{0.346\;2}{0.588\;7} $ $\dfrac{0.377\;4}{0.615\;9} $ 主波长/nm 555.7 548.3 544.4 556.6 560.7 峰值波长/nm 539.1 534.8 530.1 544.1 544.2 半波宽/nm 85.9 75.9 74.7 2.9 2.9 显色指数Ra 23.2 15.8 19.7 23.9 2 荧光寿命/ms 0.62 0.66 0.57 0.60 1.34 中心粒径/μm 2.45 2.32 2.5 1.93 2.68 余辉/ms 0.6 8 0.1 1.2 1.7 《光电子成像器件原理》[25] 像管分辨力/(lp/mm) ≥57 ≥60 ≥57 ≥65 ≥61 制成像管后测试 -
[1] 白延柱, 金伟其. 光电子成像原理与技术[M]. 北京: 北京理工大学出版社, 2013: 245-251.BAI Yanzhu, JIN Weiqi. Principle and technology of photoelectric imaging[M]. Beijing:Beijing Institute of Technology Press, 2013: 245-251. [2] 郭晖, 向世明, 田民强. 微光夜视技术发展动态评述[J]. 红外技术,2013,35(2):63-68.GUO Hui, XIANG Shiming, TIAN Minqiang. A review of the development of low-light night vision technology[J]. Infrared Technology,2013,35(2):63-68. [3] 程宏昌, 石峰, 李周奎, 等. 微光夜视器件划代方法初探[J]. 应用光学,2021,42(6):1092-1101. doi: 10.5768/JAO202142.0604001CHENG Hongchang, SHI Feng, LI Zhoukui, et al. Preliminary study on distinguishment method of low-level-light night vision devices[J]. Journal of Applied Optics,2021,42(6):1092-1101. doi: 10.5768/JAO202142.0604001 [4] 李晓峰, 赵恒, 张彦云,等. 高性能超二代像增强器及发展[J]. 红外技术,2021,43(9):811-816.LI Xiaofeng, ZHAO Heng, ZHANG Yanyun, et al. High performance super second generation image intensifier and its further development[J]. Infrared Technology,2021,43(9):811-816. [5] 金伟其, 陶禹, 石峰, 等. 微光视频器件及其技术的进展[J]. 红外与激光工程,2015,44(11):3167-3176. doi: 10.3969/j.issn.1007-2276.2015.11.001JIN Weiqi, TAO Yu, SHI Feng, et al. Progress of low level light video technology[J]. Infrared and Laser Engineering,2015,44(11):3167-3176. doi: 10.3969/j.issn.1007-2276.2015.11.001 [6] 梁静秋. 微光显示器件的研究进展[J]. 光机电信息,2010,27(12):21-27.LIANG Jingqiu. Research advances in micro-LED display devices[J]. OME Information,2010,27(12):21-27. [7] 贺英萍. 紫外像增强器性能测试研究[D]. 西安: 西安工业大学, 2007.HE Yingping. The study on performance measurement of UV image intensifier[D]. Xi' an: Xi' an Technological University, 2007. [8] 邱亚峰. 像增强器荧光屏发光特性及测试技术研究[D]. 南京: 南京理工大学, 2008.QIU Yafeng. Research on luminance characteristics and testing technology of low light image intensifier fluorescence screen[D]. Nanjing: Nanjing University of Science & Technology, 2008. [9] 徐江涛, 张兴社. 微光像增强器的最新发展动向[J]. 应用光学,2005,26(2):21-23. doi: 10.3969/j.issn.1002-2082.2005.02.006XU Jiangtao, ZHANG Xingshe. The latest development of low-light-level image intensifier[J]. Journal of Applied Optics,2005,26(2):21-23. doi: 10.3969/j.issn.1002-2082.2005.02.006 [10] 赵伟林, 曾进能, 李廷涛. 像增强器用荧光粉的国外应用现状及分析[J]. 云光技术,2019,51(2):7-10.ZHAO Weilin, ZENG Jinneng, LI Tingtao. Application status and analysis of phosphors for image intensifiers in foreign countries[J]. Yun Guang Ji Shu,2019,51(2):7-10. [11] 李金平, 张洋, 王云. 微光像增强器用核心材料的发展现状与展望[J]. 光学技术,2017,43(3):284-288.LI Jinpin, ZHANG Yang, WANG Yun. The current situation and development of low-light-level image intensifier and its core materials[J]. Optical Technique,2017,43(3):284-288. [12] 刘照路. 微光像增强器荧光屏发光效率影响因素及测试评价方法研究[D]. 南京: 南京理工大学, 2008.LIU Zhaolu. Research on affecting factors of fluorescent screen luminous efficiency of low-level-light image intensifier and test method[D]. Nanjing: Nanjing University of Science & Technology, 2008. [13] 张太民. 像增强器荧光屏发光性能评价方法研究[D]. 西安: 西安工业大学, 2013.ZHANG Taimin. Research of an approach to evaluate luminescence properties of image intensifier screen[D]. Xi' an: Xi' an Technological University, 2013. [14] 郑林涛. 高性能荧光屏的研究[D]. 南京: 南京理工大学, 2008.ZHENG Lintao. Research on high performance screen[D]. Nanjing: Nanjing University of Science & Technology, 2008. [15] 张成群. 高亮度荧光屏制造技术及研究[D]. 长春: 长春理工大学, 2006.ZHANG Chengqun. Study on manufacturing technology of high-brightness screen[D]. Changchun: Changchun University of Science and Technology, 2006. [16] 李世龙, 石峰, 张太民,等. 高性能像增强器荧光屏粉层设计[J]. 红外与激光工程,2016,45(增刊2):111-00.LI Shilong, SHI Feng, ZHANG Taiming, et al. Powder layer design of high performance image intensifier phosphor screen[J]. Infrared and Laser Engineering,2016,45(S2):111-00. [17] 宋伟朋, 李志强, 李旭,等. 晶体结构对(Zn, Cd)S: Cu电致发光材料发光性能的影响[J]. 河北大学学报(自然科学版),2005,25(6):599-603.SONG Weipeng, LI Zhiqiang, LI Xu, et al. Effect of crystal structure on the photoluminescence property of ZnS: Cu electroluminescent material[J]. Journal of Hebei University(Natural Science Edition),2005,25(6):599-603. [18] 张海明, 王之建, 张立功,等. 化学合成法制备ZnS: Cu纳米荧光粉研究[J]. 人工晶体学报,2003,32(1):63-66. doi: 10.3969/j.issn.1000-985X.2003.01.014ZHANG Haiming, WANG Zhijian, ZHANG Ligong, et al. Study on preparation of Cu doped ZnS nano-phosphor powder by chemical synthesis[J]. Journal of Synthetic Crystals,2003,32(1):63-66. doi: 10.3969/j.issn.1000-985X.2003.01.014 [19] 新梅, 曹望和. 水热法合成高发光强度ZnS: Cu, Al纳米荧光粉研究[J]. 功能材料, 2009, 2(40): 328-331.XIN Mei, CAO Wanghe. Study on highly luminescent Zn: Cu, Al nano-phosphor powder synthesized by hydrothermal method[J]. Journal of Functional Materials. 2009, 2(40): 328-331. [20] 仇满德, 姚子华, 刘元红,等. 微波场作用下Gd2O2S: Tb绿色荧光粉的快速合成及其发光特性[J]. 功能材料, 2007, 38: 226-229.QIU Mande, YAO Zihua, LIU Yuanhong, et al. Rapid synthesis of Gd2O2S: Tb green-emitting phosphor by the microwave radiation method and its luminescent properties[J]. Journal of Functional Materials. 2007, 38: 226-229. [21] 翟永清, 刘元红, 李常娥, 等. 微波场作用下Y2O2S: Tb 绿色荧光粉的快速合成及其发光特性[J]. 稀有金属材料与工程,2007,36(9):1657-1660. doi: 10.3321/j.issn:1002-185x.2007.09.034ZHAI Yongqing, LIU Yuanhong, LI Change, et al. Rapid synthesis and luminescent properties of Y2O2S: Tb green-emitting phosphors by microwave radiation[J]. Rare Metal Materials and Engineering,2007,36(9):1657-1660. doi: 10.3321/j.issn:1002-185x.2007.09.034 [22] 王飞, 张金朝, 宋鹂. 助熔剂法合成Gd2O2S: Tb荧光粉[J]. 华东理工大学学报,2006,32(8):943-947.WANG Fei, ZHANG Jinchao, SONG Li. Synthesis of the terbium activated gadolinium oxysulfide phosphor by flux method[J]. Journal of East China University of Science and Technology ( Natural Science Edition),2006,32(8):943-947. [23] 王生云, 史继芳, 解琪,等. 紫外像增强器分辨力校准装置与方法研究[J]. 应用光学,2020,41(4):773-777. doi: 10.5768/JAO202041.0409901WANG Shengyun, SHI Jifang, XIE Qi, et al. Research on resolution calibration device and method of ultraviolet image intensifier[J]. Journal of Applied Optics,2020,41(4):773-777. doi: 10.5768/JAO202041.0409901 [24] 李晓峰, 常乐, 赵恒, 等. 超二代与三代像增强器低照度分辨力的比较[J]. 光子学报,2021,50(9):0904003. doi: 10.3788/gzxb20215009.0904003LI Xiaofeng, CHANG Le, ZHAO Heng, et al. Comparison of resolution between super Gen. Ⅱand Gen. Ⅲ image intensifier[J]. Acta Photonica Sinica,2021,50(9):0904003. doi: 10.3788/gzxb20215009.0904003 [25] 向世明, 倪国强. 光电子成像器件原理[M]. 北京: 国防工业出版社, 2006: 201-202.XIANG Shiming, NI Guoqiang. The principle of photoelectronic imaging decices[M]. Beijing: National Defense Industry Press, 2006: 201-202. -