Research on air tightness of image intensifier tube during laser sealing
-
摘要: 采用高功率YAG激光焊接机对高性能三代像管管壳后端(4J34可伐合金)与荧光屏屏环(4J49可伐合金)进行封接试验。研究了激光功率、脉冲宽度对焊接接头成型及表面热扩散的影响规律。研究表明:4J34合金与4J49合金表面成型质量在设备最大工作电流100 A,激光功率195 W及脉宽1.7 ms时最好,相对于激光功率,脉冲宽度对焊缝熔宽和熔深的影响更加显著,接头焊接中心区硬化最为严重,其硬度最大,热影响区次之。Abstract: A high-power YAG laser welding machine was used to seal the back end of the high performance third generation image tube (4J34 kovar alloy) and the fluorescent screen ring (4J49 kovar alloy). The effects of laser power and pulse width on welding joint forming and surface thermal diffusion were studied. The results show that the surface forming quality of 4J34 alloy and 4J49 alloy is the best when the maximum operating current is 100 A, the laser power is 195 W and the pulse width is 1.7 ms. Compared with the laser power, the pulse width has a more significant effect on the weld width and weld depth. The hardening in the welding center is the most serious, and the hardness is the lagest, followed by the heat affected zone.
-
Key words:
- low-level-light image intensifier /
- air tightness /
- laser sealing /
- microhardness /
- microstructure
-
表 1 4J34可伐合金化学成分表
Table 1 Chemical composition of 4J34 kovar alloy
C P S Mn Si Ni Co Fe 不大于(≤) 0.05 0.02 0.02 0.5 0.3 28.5~29.5 19.5-20.5 均衡 表 2 4J49可伐合金化学成分表
Table 2 Chemical composition of 4J49 kovar alloy
C P S Mn Si B Ni Cr Fe 不大于(≤) 0.05 0.02 0.02 0.5 0.3 0.02 46.0~48.0 5.00-6.00 均衡 表 3 WF300激光焊接机的主要技术参数
Table 3 Main technical parameters of WF300 laser welding machine
最大激光功率/W 最大激光脉冲能量/J 最大脉宽/ms 最大频率/Hz 300 80 20 500 表 4 试验因子水平表
Table 4 Test factor level
水平 因素代号 A脉冲宽度/ms B激光功率/W 1 1.2 195(65%) 2 1.7 210(70%) 3 2.2 225(75%) 表 5 焊接接头气密性
Table 5 Air tightness of welded joints
脉宽/ms 激光功率/W 195 210 225 1.2 未焊上(37 J) 未焊上(39 J) 1.0×10−13
mbar·l/s(39 J)1.7 1.0×10−13
mbar·l/s(41 J)1.0×10−13
mbar·l/s(42 J)1.0×10−13
mbar·l/s(43 J)2.2 1.0×10−13
mbar·l/s(46 J)漏气(48 J) 1.0×10−13
mbar·l/s(48 J) -
[1] 郭晖, 向世明, 田民强. 微光夜视技术发展动态评述[J]. 红外技术,2013,35(2):63-68.GUO Hui, XIANG Shiming, TIAN Minqiang. A review of the development of low-light night vision technology[J]. Infrared Technology,2013,35(2):63-68. [2] 程宏昌, 石峰, 李周奎, 等. 微光夜视器件划代方法初探[J]. 应用光学,2021,42(6):1092-1101. doi: 10.5768/JAO202142.0604001CHENG Hongchang, SHI Feng, LI Zhoukui, et al. Preliminary study on distinguishment method of low-level-light night vision devices[J]. Journal of Applied Optics,2021,42(6):1092-1101. doi: 10.5768/JAO202142.0604001 [3] 艾克聪. 微光夜视技术的进展与展望[J]. 应用光学,2006,27(4):303-307.AI Kecong. Development and prospect of low-light-level(LLL) night vision technology[J]. Journal of Applied Optics,2006,27(4):303-307. [4] 程耀进, 徐江涛, 闫磊, 等. 微光像增强器管壳内部真空度恶化分析研究[J]. 真空电子技术,2012(2):55-57. doi: 10.3969/j.issn.1002-8935.2012.02.012CHENG Yaojin, XU Jiangtao, YAN Lei, et al. Study on decrease of vacuum level in low-light image intensifier[J]. Vacuum Electronics,2012(2):55-57. doi: 10.3969/j.issn.1002-8935.2012.02.012 [5] 王涛, 赵文锦, 唐家业, 等. 像增强管制作过程中的气密性研究[J]. 光电子技术,2015,35(2):140-143.WANG Tao, ZHAO Wenjin, TANG Jiaye, et al. Investigation on the air-tightness of image intensifier fabrication process[J]. Optoelectronic Technology,2015,35(2):140-143. [6] 郑春雷, 杨永强, 欧阳建国. Q345E与20CrMnTiH异种钢焊接工艺研究与应用[J]. 金属制品,2021,47(5):48-49,56.ZHENG Chunlei, YANG Yongqiang, OUYANG Jianguo. Research and application of welding process for Q345E and 20CrMnTiH dissimilar steel[J]. Metal Products,2021,47(5):48-49,56. [7] 罗兵兵, 张华, 雷敏, 等. 汽车6016铝合金/低碳钢激光焊接头界面组织与性能[J]. 材料导报,2020,34(4):4108-4112.LUO Bingbing, ZHANG Hua, LEI Min, et al. Laser welded joints of automotive 6016 aluminum and low carbon steel: interface microstructure and mechanical properties[J]. Materials Reports,2020,34(4):4108-4112. [8] 马迎英, 欧丽, 梁莉, 等. 真空器件用玻璃——可伐管状封接工艺研究[J]. 真空,2014,51(5):47-50.MA Yingying, OU Li, LIANG Li, et al. Study of glass-kovar tubular sealing technique for vacuum devices[J]. Vacuum,2014,51(5):47-50. [9] MACKWOOD A P, CRAFER R C. Thermal modelling of laser welding and related processes: a literature review[J]. Optics & Laser Technology,2005,37(2):99-115. [10] 雷党刚. 可伐合金外壳激光封焊的裂纹原因分析[J]. 电子工艺技术,2012,33(1):45-49.LEI Danggang. Analysis of laser welding cracks on kovar alloy box[J]. Electronics Process Technology,2012,33(1):45-49. [11] EBRAHIMZADEH H, FARHANGI H, MOUSAVI S A A A. Hot cracking in autogenous welding of 6061-T6 aluminum alloy by rectangular pulsed Nd: YAG laser beam[J]. Welding in the World,2020,64(6):1077-1088. doi: 10.1007/s40194-020-00899-y [12] RAMASAMY S, ALBRIGHT C. CO2 and Nd: YAG laser beam welding of 6111-T4 aluminum alloy for automotive applications[J]. Journal of Laser Applications,2000,12(3):101-115. doi: 10.2351/1.521923 [13] 蒋金玲, 张恩华, 李硕, 等. 激光焊接参数对焊接质量影响的实验研究[J]. 应用激光,2020,40(5):867-872.JIANG Jinling, ZHANG Enhua, LI Shuo, et al. ExperimentalStudy on the effects of laser welding parameters on welding quality[J]. Applied Laser,2020,40(5):867-872. [14] 单晨, 龙芋宏, 赵要武, 等. 钢铝异种合金激光焊接接头力学性能的研究进展[J]. 热加工工艺,2022(19):1-6.SHAN Chen, LONG Yuhong, ZHAO Yaowu, et al. Research progress on mechanical properties of laser welded joints of steel and aluminum dissimilar metals[J]. Hot Working Technology,2022(19):1-6. [15] 栗卓新, 张冬妮, 言奇株, 等. 异种材料激光焊接中金属间化合物形成机理及控制的研究进展[J]. 航空制造技术,2021,64(15):14-23.LI Zhuoxin, ZHANG Dongni, YAN Qizhu, et al. Research progress on formation and control of intermetallic compounds in laser welding of dissimilar materials[J]. Aeronautical Manufacturing Technology,2021,64(15):14-23. -