留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微通道板输入电极对开口面积比的影响及改进研究

王鹏飞 邱祥彪 邵爱飞 孙赛林 丛晓庆 金戈 孙建宁 王健 乔芳建 高鹏 赵胜 陈坤杨

王鹏飞, 邱祥彪, 邵爱飞, 孙赛林, 丛晓庆, 金戈, 孙建宁, 王健, 乔芳建, 高鹏, 赵胜, 陈坤杨. 微通道板输入电极对开口面积比的影响及改进研究[J]. 应用光学, 2022, 43(6): 1158-1164. doi: 10.5768/JAO202243.0604016
引用本文: 王鹏飞, 邱祥彪, 邵爱飞, 孙赛林, 丛晓庆, 金戈, 孙建宁, 王健, 乔芳建, 高鹏, 赵胜, 陈坤杨. 微通道板输入电极对开口面积比的影响及改进研究[J]. 应用光学, 2022, 43(6): 1158-1164. doi: 10.5768/JAO202243.0604016
WANG Pengfei, QIU Xiangbiao, SHAO Aifei, SUN Sailin, CONG Xiaoqing, JIN Ge, SUN Jianning, WANG Jian, QIAO Fangjian, GAO Peng, ZHAO Sheng, CHEN Kunyang. Influence of input electrode of micro-channel plate on opening area ratio and its improvement[J]. Journal of Applied Optics, 2022, 43(6): 1158-1164. doi: 10.5768/JAO202243.0604016
Citation: WANG Pengfei, QIU Xiangbiao, SHAO Aifei, SUN Sailin, CONG Xiaoqing, JIN Ge, SUN Jianning, WANG Jian, QIAO Fangjian, GAO Peng, ZHAO Sheng, CHEN Kunyang. Influence of input electrode of micro-channel plate on opening area ratio and its improvement[J]. Journal of Applied Optics, 2022, 43(6): 1158-1164. doi: 10.5768/JAO202243.0604016

微通道板输入电极对开口面积比的影响及改进研究

doi: 10.5768/JAO202243.0604016
基金项目: 国家自然科学基金青年基金项目(12003010)
详细信息
    作者简介:

    王鹏飞(1992—),男,硕士研究生,工程师,主要从事微通道板制造工艺技术研究。E-mail:custwangpengfei@163.com

    通讯作者:

    邱祥彪(1989—),男,硕士研究生,工程师,主要从事微通道板及微通道板型光电探测器技术研究。E-mail:ndqxb@163.com

  • 中图分类号: TN233

Influence of input electrode of micro-channel plate on opening area ratio and its improvement

  • 摘要: 微通道板作为一种关键的电子倍增器件,广泛应用于诸多领域。分析了NiCr膜层作为微通道板的输入端电极时,对微通道板开口面积比的影响,建立了理论模型,计算了膜层厚度、镀膜深度等参数对开口面积比的影响。开展了2种减小开口面积比损失的镀膜研究:一是进行工艺调整,减弱合金蒸发的分馏效应,降低电极膜层的电阻率,开口面积比损失量降低约2%;二是改变镀膜方式,使用Ni、Cr金属单质镀制叠层薄膜,在镀膜过程中调控镍、铬的比例,将输入端电极中镍比例升高,同样可以降低电极膜层的电阻率,在满足面电阻要求的前提下,可减薄输入端膜层至86 nm,与300 nm厚度的常规镍铬合金膜层相比,MCP输入端的开口面积比损失量降低3%~4%,MCP增益提升6%。
  • 图  1  电极膜层影响开口面积比模型

    Fig.  1  Model of OAR influenced by electrode film

    图  2  通道内壁镀膜俯视图

    Fig.  2  Top view of coating in channel inner wall

    图  3  膜层厚度、孔径对于MCP开口面积比的影响

    Fig.  3  Effect of film thickness and aperture on opening area ratio of MCP

    图  4  NiCr叠层结构示意图

    Fig.  4  Schematic diagram of NiCr laminated structure

    图  5  MCP输入端NiCr叠层实物图与孔径测量实物图

    Fig.  5  Physical drawing of NiCr laminated film and aperture measurement at MCP input terminal

    图  6  输入端膜层Cr∶Ni=1∶5的EDS能谱图

    Fig.  6  EDS energy spectrum of input terminal film when Cr∶Ni = 1∶5

    图  7  原镀膜工艺膜层实物图与孔径测量实物图

    Fig.  7  Physical drawing of film layer and aperture measurement of original coating process

    图  8  原镀膜工艺制出输入端膜层EDS能谱图

    Fig.  8  EDS energy spectrum of input terminal film prepared by original coating process

    表  1  蒸镀工艺与电阻率的关系表

    Table  1  Relationship between evaporation process and resistivity

    蒸镀工艺电阻率/×10−6 Ω·m
    原工艺6.13
    工艺一5.74
    工艺二5.59
    下载: 导出CSV

    表  2  蒸镀工艺与方块电阻的关系表

    Table  2  Relationship between evaporation process and square resistance

    蒸镀工艺开口面积比/%
    原工艺59.4
    工艺二61.7
    下载: 导出CSV

    表  3  叠层工艺与方块电阻的关系表

    Table  3  Relationship between lamination process and square resistance

    Cr∶NiMCP编号膜层厚度/nm电阻率/(×10−6 Ω·m)
    原镀膜工艺
    对照(1∶1)
    0091-4232895.92
    0091-4412935.85
    1∶20091-4783061.51
    0091-4763121.36
    1∶40091-4792951.01
    0091-4842981.04
    1∶50091-4903040.93
    0091-4863060.89
    下载: 导出CSV

    表  4  原镀膜工艺与Cr∶Ni=1∶5时,800V电压下MCP增益对比表

    Table  4  Comparison of MCP gain under 800 V voltage between original coating process and Cr∶Ni = 1∶5

    原工艺2 296
    输入Cr∶Ni=1∶52 436
    增益变化/%6.1
    下载: 导出CSV
  • [1] YAN B, LIU S, HENG Y. Nano-oxide thin films deposited via atomic layer deposition on microchannel plates[J]. Springer US, 2015(1), 10: 162.
    [2] 潘京生. 微通道板及其主要特征性能[J]. 应用光学,2004,25(5):26-30. doi: 10.3969/j.issn.1002-2082.2004.05.008

    PAN Jingsheng. Microchannel plates and Its main characteristics[J]. Journal of Applied Optics,2004,25(5):26-30. doi: 10.3969/j.issn.1002-2082.2004.05.008
    [3] 李晓峰, 李廷涛, 曾进能, 等. 微通道板输入信号利用率提高研究[J]. 光子学报,2020,49(3):325002. doi: 10.3788/gzxb20204903.0325002

    LI Xiaofeng, LI Tingtao, ZENG Jinneng, et al. Study on the improvement of input signal utilization of MCP[J]. Acta Photonica Sinica,2020,49(3):325002. doi: 10.3788/gzxb20204903.0325002
    [4] 刘术林, 李翔, 邓广绪, 等. 低噪声、高增益微通道板的研制[J]. 应用光学,2006,27(6):552-557. doi: 10.3969/j.issn.1002-2082.2006.06.019

    LIU Shulin, LI Xiang, DENG Guangxu, et al. Development of low-noise, high-gain microchannel plate[J]. Journal of Applied Optics,2006,27(6):552-557. doi: 10.3969/j.issn.1002-2082.2006.06.019
    [5] 苏德坦, 孙建宁, 陈晓倩, 等. 大长径比皮料玻璃管加工工艺研究及应用[J]. 应用光学,2021,42(2):346-351. doi: 10.5768/JAO202142.0205003

    SU Detan, SUN Jianning, CHEN Xiaoqian, et al. Research and application of processing technology of cladding-tube with large aspect ratio[J]. Journal of Applied Optics,2021,42(2):346-351. doi: 10.5768/JAO202142.0205003
    [6] MATOBA S, TAKAHASHI R, IO C, et al. Absolute detection efficiency of a high-sensitivity microchannel plate with tapered pores[J]. Review of Scientific Instruments,2013,85(11R):13.
    [7] 傅文红, 常本康. 扩口微通道板对电流增益和噪声因子关系的影响[J]. 应用光学, 2004, 25(5): 22-24.

    FU Wenhong , CHANG Benkang.A research into the effect of funnel MCP on the relationship between current gain and noise figure[J]. Journal of Applied Optics, 2004, 25(5): 22-24.
    [8] 周继承, 田莉. 镍铬合金薄膜的研究进展[J]. 材料导报,2005(7):5-7. doi: 10.3321/j.issn:1005-023X.2005.07.002

    ZHOU Jicheng, TIAN Li. Research progress in Ni-Cr alloy thin film[J]. Materials Reports,2005(7):5-7. doi: 10.3321/j.issn:1005-023X.2005.07.002
    [9] 王强文, 郭育华, 刘建军, 等. 硅基高精度镍铬薄膜电阻的制备和性能表征[J]. 电子器件,2018,41(6):1371-1375. doi: 10.3969/j.issn.1005-9490.2018.06.004

    WANG Qiangwen, GUO Yuhua, LIU Jianjun, et al. Fabrication and properties characterization of Silicon-Based high precision nickel chromium film resistors.[J]. Chinese Journal of Electron Devices,2018,41(6):1371-1375. doi: 10.3969/j.issn.1005-9490.2018.06.004
    [10] 唐伟忠. 薄膜材料制备原理、技术及应用[M]. 北京: 冶金工业出版社, 2003: 27-28.

    TANG Weizhong, The preparation theory, technique and application of thin films[M]. Beijing: Metallurgical Industry Press, 2003: 27-28.
    [11] 王华. 加热炉[M]. 北京: 冶金工业出版社, 2015, 25-27.

    WANG Hua. Pipe furnace. [M]. Beijing: Metallurgical Industry Press, 2015: 25-27.
    [12] 冯丽萍, 刘正堂. 薄膜技术与应用[M]. 西安: 西北工业大学出版社, 2016: 44-45.

    FENG Liping, LIU Zhengtang. Thin film technology and application [M]. Xian: Northwestern Polytechnical University Press, 2016: 44-45.
    [13] 肖定全, 朱建国, 朱基亮, 等. 薄膜物理与器件[M]. 北京: 国防工业出版社, 2011: 35-36.

    XIAO Dingquan, ZHU Jianguo, ZHU Jiliang, et al. Thin film technology and application [M]. Beijing: National Defence Industry Press, 2011: 35-36.
    [14] 王冰. 光学零件镀膜后光洁度与牢固度的探讨[J]. 应用光学,2003,24(2):37-38. doi: 10.3969/j.issn.1002-2082.2003.02.012

    WANG Bing. Research and discussion on fineness and firmness for optical film-coating[J]. Journal of Applied Optics,2003,24(2):37-38. doi: 10.3969/j.issn.1002-2082.2003.02.012
    [15] 张杰. 氧化物/金属/氧化物叠层透明导电薄膜研究[D]. 南京: 南京邮电大学, 2018.

    ZHANG Jie. Study of oxide/metal/oxide stacked transparent conductive thin films[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2018.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  34
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-17
  • 修回日期:  2022-10-12
  • 网络出版日期:  2022-11-09
  • 刊出日期:  2022-11-14

目录

    /

    返回文章
    返回