Influence of input electrode of micro-channel plate on opening area ratio and its improvement
-
摘要: 微通道板作为一种关键的电子倍增器件,广泛应用于诸多领域。分析了NiCr膜层作为微通道板的输入端电极时,对微通道板开口面积比的影响,建立了理论模型,计算了膜层厚度、镀膜深度等参数对开口面积比的影响。开展了2种减小开口面积比损失的镀膜研究:一是进行工艺调整,减弱合金蒸发的分馏效应,降低电极膜层的电阻率,开口面积比损失量降低约2%;二是改变镀膜方式,使用Ni、Cr金属单质镀制叠层薄膜,在镀膜过程中调控镍、铬的比例,将输入端电极中镍比例升高,同样可以降低电极膜层的电阻率,在满足面电阻要求的前提下,可减薄输入端膜层至86 nm,与300 nm厚度的常规镍铬合金膜层相比,MCP输入端的开口面积比损失量降低3%~4%,MCP增益提升6%。Abstract: As a key electron multiplier, the micro-channel plate is widely used in many fields. The effect of NiCr film as the input electrode of micro-channel plate on the opening area ratio of micro-channel plate was analyzed. A theoretical model was established, and the effects of coating thickness, coating depth and other parameters on the opening area ratio were calculated. Two kinds of coating research were carried out to reduce the loss of opening area ratio. One way, the process was adjusted to weaken the fractionation effect of alloy evaporation, reduce the resistivity of electrode film layer, and the loss of opening area ratio was reduced by about 2 percentage points. Another way was to change the coating method, the Ni and Cr metal were used to prepare laminated films, regulate the proportion of Ni and Cr in the coating process, increase the proportion of Ni in the input terminal electrode, and also reduce the resistivity of the electrode film. On the premise of meeting the surface resistance requirements, the input terminal film could be thinned to 86 nm. Compared with the conventional Ni-Cr alloy film with a thickness of 300 nm, the loss of the opening area ratio of the MCP input terminal was reduced by 3~4 percentage points, and the MCP gain was increased by 6%.
-
Key words:
- micro-channel plate /
- opening area ratio /
- input electrode /
- laminated film electrode
-
表 1 蒸镀工艺与电阻率的关系表
Table 1 Relationship between evaporation process and resistivity
蒸镀工艺 电阻率/×10−6 Ω·m 原工艺 6.13 工艺一 5.74 工艺二 5.59 表 2 蒸镀工艺与方块电阻的关系表
Table 2 Relationship between evaporation process and square resistance
蒸镀工艺 开口面积比/% 原工艺 59.4 工艺二 61.7 表 3 叠层工艺与方块电阻的关系表
Table 3 Relationship between lamination process and square resistance
Cr∶Ni MCP编号 膜层厚度/nm 电阻率/(×10−6 Ω·m) 原镀膜工艺
对照(1∶1)0091-423 289 5.92 0091-441 293 5.85 1∶2 0091-478 306 1.51 0091-476 312 1.36 1∶4 0091-479 295 1.01 0091-484 298 1.04 1∶5 0091-490 304 0.93 0091-486 306 0.89 表 4 原镀膜工艺与Cr∶Ni=1∶5时,800V电压下MCP增益对比表
Table 4 Comparison of MCP gain under 800 V voltage between original coating process and Cr∶Ni = 1∶5
原工艺 2 296 输入Cr∶Ni=1∶5 2 436 增益变化/% 6.1 -
[1] YAN B, LIU S, HENG Y. Nano-oxide thin films deposited via atomic layer deposition on microchannel plates[J]. Springer US, 2015(1), 10: 162. [2] 潘京生. 微通道板及其主要特征性能[J]. 应用光学,2004,25(5):26-30. doi: 10.3969/j.issn.1002-2082.2004.05.008PAN Jingsheng. Microchannel plates and Its main characteristics[J]. Journal of Applied Optics,2004,25(5):26-30. doi: 10.3969/j.issn.1002-2082.2004.05.008 [3] 李晓峰, 李廷涛, 曾进能, 等. 微通道板输入信号利用率提高研究[J]. 光子学报,2020,49(3):325002. doi: 10.3788/gzxb20204903.0325002LI Xiaofeng, LI Tingtao, ZENG Jinneng, et al. Study on the improvement of input signal utilization of MCP[J]. Acta Photonica Sinica,2020,49(3):325002. doi: 10.3788/gzxb20204903.0325002 [4] 刘术林, 李翔, 邓广绪, 等. 低噪声、高增益微通道板的研制[J]. 应用光学,2006,27(6):552-557. doi: 10.3969/j.issn.1002-2082.2006.06.019LIU Shulin, LI Xiang, DENG Guangxu, et al. Development of low-noise, high-gain microchannel plate[J]. Journal of Applied Optics,2006,27(6):552-557. doi: 10.3969/j.issn.1002-2082.2006.06.019 [5] 苏德坦, 孙建宁, 陈晓倩, 等. 大长径比皮料玻璃管加工工艺研究及应用[J]. 应用光学,2021,42(2):346-351. doi: 10.5768/JAO202142.0205003SU Detan, SUN Jianning, CHEN Xiaoqian, et al. Research and application of processing technology of cladding-tube with large aspect ratio[J]. Journal of Applied Optics,2021,42(2):346-351. doi: 10.5768/JAO202142.0205003 [6] MATOBA S, TAKAHASHI R, IO C, et al. Absolute detection efficiency of a high-sensitivity microchannel plate with tapered pores[J]. Review of Scientific Instruments,2013,85(11R):13. [7] 傅文红, 常本康. 扩口微通道板对电流增益和噪声因子关系的影响[J]. 应用光学, 2004, 25(5): 22-24.FU Wenhong , CHANG Benkang.A research into the effect of funnel MCP on the relationship between current gain and noise figure[J]. Journal of Applied Optics, 2004, 25(5): 22-24. [8] 周继承, 田莉. 镍铬合金薄膜的研究进展[J]. 材料导报,2005(7):5-7. doi: 10.3321/j.issn:1005-023X.2005.07.002ZHOU Jicheng, TIAN Li. Research progress in Ni-Cr alloy thin film[J]. Materials Reports,2005(7):5-7. doi: 10.3321/j.issn:1005-023X.2005.07.002 [9] 王强文, 郭育华, 刘建军, 等. 硅基高精度镍铬薄膜电阻的制备和性能表征[J]. 电子器件,2018,41(6):1371-1375. doi: 10.3969/j.issn.1005-9490.2018.06.004WANG Qiangwen, GUO Yuhua, LIU Jianjun, et al. Fabrication and properties characterization of Silicon-Based high precision nickel chromium film resistors.[J]. Chinese Journal of Electron Devices,2018,41(6):1371-1375. doi: 10.3969/j.issn.1005-9490.2018.06.004 [10] 唐伟忠. 薄膜材料制备原理、技术及应用[M]. 北京: 冶金工业出版社, 2003: 27-28.TANG Weizhong, The preparation theory, technique and application of thin films[M]. Beijing: Metallurgical Industry Press, 2003: 27-28. [11] 王华. 加热炉[M]. 北京: 冶金工业出版社, 2015, 25-27.WANG Hua. Pipe furnace. [M]. Beijing: Metallurgical Industry Press, 2015: 25-27. [12] 冯丽萍, 刘正堂. 薄膜技术与应用[M]. 西安: 西北工业大学出版社, 2016: 44-45.FENG Liping, LIU Zhengtang. Thin film technology and application [M]. Xian: Northwestern Polytechnical University Press, 2016: 44-45. [13] 肖定全, 朱建国, 朱基亮, 等. 薄膜物理与器件[M]. 北京: 国防工业出版社, 2011: 35-36.XIAO Dingquan, ZHU Jianguo, ZHU Jiliang, et al. Thin film technology and application [M]. Beijing: National Defence Industry Press, 2011: 35-36. [14] 王冰. 光学零件镀膜后光洁度与牢固度的探讨[J]. 应用光学,2003,24(2):37-38. doi: 10.3969/j.issn.1002-2082.2003.02.012WANG Bing. Research and discussion on fineness and firmness for optical film-coating[J]. Journal of Applied Optics,2003,24(2):37-38. doi: 10.3969/j.issn.1002-2082.2003.02.012 [15] 张杰. 氧化物/金属/氧化物叠层透明导电薄膜研究[D]. 南京: 南京邮电大学, 2018.ZHANG Jie. Study of oxide/metal/oxide stacked transparent conductive thin films[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2018. -