Development of afterglow time test system for nanosecond fluorescent screen of low-level-light image intensifier
-
摘要: 荧光屏时间特性是评价像增强器性能的重要参数之一。微光像增强器纳秒级荧光屏余辉时间目前尚缺乏测试手段,基于传统像增强器余辉时间的测试方案,研制了纳秒级荧光屏余辉时间测试系统。该系统通过采样速率250 MHz的高速信号发生器完成对激光二极管光脉冲的激励,经由下降时间为0.57 ns的光电倍增管完成对荧光屏光信号的光电转换,µA量级的微弱光电流信号经放大及单端转差分电路,在AD9684中完成AD转换,随后荧光屏数字亮度信息经现场可编程门阵列(field programmable gate array, FPGA)后存储至DDR(double data rate)单元内,经上位机发出指令实现DDR内存的读取,通过USB3.0高速传输协议至上位机中。在数据处理中采用卡尔曼滤波及快速寻找下降沿算法,实现对采集数据的噪声滤波和余辉时间的准确测量。测试结果表明,该纳秒级荧光屏余辉时间测试系统可对具有超快光学特性的像增强器进行有效测试,P47型荧光粉的余辉测试结果达到118. 094 4 ns,重复度为2.08%。Abstract: The time characteristics of fluorescent screen is one of the important parameters to evaluate the performance of image intensifier. At present, there is no measurement method for the afterglow time of nanosecond fluorescent screen of low-level-light image intensifier. Based on the traditional test scheme of image intensifier afterglow time, a afterglow time test system for nanosecond fluorescent screen was developed. This system used a high-speed signal generator with the sampling rate of 250 MHz to complete the excitation of the laser diode light pulse, and a photomultiplier tube was used with the descending time of 0.57 ns to complete the photoelectric conversion of the fluorescent screen light signal. The weak photocurrent signal of µA magnitude was amplified and converted to a single-terminal differential circuit to complete the AD conversion in AD9684. Then the digital luminance information of the fluorescent screen was stored in the double data rate SDRAM (DDR) unit after field programmable gate array (FPGA), and the host computer sent instructions to read the DDR memory. The USB3.0 high-speed transmission protocol was used to transmit data to the host computer. In the data processing, the Kalman filtering and fast finding falling edge algorithm were used to realize the accurate measurement of noise filtering from collected data and afterglow time. The test results show that the proposed afterglow time test system for nanosecond fluorescent screen can effectively test the image intensifier with ultrafast optical characteristics. The afterglow test results of P47 phosphor reaches 118. 094 4 ns, and the repeatability reaches 2.08%.
-
表 1 高速信号发生器产生信号参数设置
Table 1 Signal parameter setting of high-speed signal generator
脉冲方波参数 脉冲方波指标 周期/µs 10 振幅/V 1.70~1.80 频率/kHz 100 占空比/% 50~90 上升时间/ns 2 下降时间/ns 2 表 2 空管条件下的光源余辉测试结果
Table 2 Test results of light source afterglow under empty-tube conditions
次数 余辉时间/ns 次数 余辉时间/ns 1 12.64 6 11.53 2 11.82 7 11.48 3 12.46 8 12.20 4 10.85 9 10.98 5 11.06 10 11.54 平均值/ns 11.656 表 3 单一模式下的余辉测试结果
Table 3 Afterglow test results in single mode
次数 余辉时间/ns 次数 余辉时间/ns 1 118.4933 6 116.2533 2 118.2133 7 117.4400 3 113.3600 8 117.5839 4 122.0800 9 119.9867 5 120.7333 10 116.8000 平均值/ns 118. 0944 重复度/% 2.08 -
[1] 郭晖, 向世明, 田民强. 微光夜视技术发展动态评述[J]. 红外技术,2013,35(2):63-68.GUO Hui, XIANG Shiming, TIAN Minqiang. Review on the development of low-light level night vision technology[J]. Infrared Technology,2013,35(2):63-68. [2] 白延柱, 金伟其. 光电成像原理与技术[M]. 北京: 北京理工大学出版社, 2013: 245-251.BAI Yanzhu, JIN Weiqi. Principle and technology of photoelectric imaging[M]. Beijing: Beijing Institute of Technology Press, 2013: 245-251. [3] 李晓峰, 杜木林, 徐传平, 等. 影响超二代像增强器最高增益的因数分析[J]. 光子学报,2022,51(3):1-12.LI Xiaofeng, DU Mulin, XU Chuanping, et al. Analysis of factors influencing the maximum gain of super second generation image intensifier[J]. Acta Photonica Sinica,2022,51(3):1-12. [4] 史继芳, 崔东旭, 贺英萍, 等. 光子计数法测量微光像增强器背景噪声分布特性[J]. 应用光学,2013,34(3):485-488.SHI Jifang, CUI Dongxu, HE Yingping, et al. Measurement of background noise distribution characteristics of low-light image intensifier by photon counting method[J]. Journal of Applied Optics,2013,34(3):485-488. [5] 孙默涵, 钱芸生, 任莹楠, 等. 基于自动亮度控制模型的门控型微光像增强器荧光屏亮度研究[J]. 光子学报,2022,51(3):163-172.SUN Mohan, QIAN Yunsheng, REN Yingnan, et al. Research on luminance of fluorescent screen of gated low-light image intensifier based on automatic luminance control model[J]. Acta Photonica Sinica,2022,51(3):163-172. [6] 邱亚峰, 石峰, 孟凡荣, 等. 真空系统中荧光屏余辉测试技术研究[J]. 真空科学与技术学报,2009,29(1):82-84. doi: 10.13922/j.cnki.cjovst.2009.01.023QIU Yafeng, SHI Feng, MENG Fanrong, et al. Study on afterglow measurement technology of phosphor screen in vacuum system[J]. Journal of Vacuum Science and Technology,2009,29(1):82-84. doi: 10.13922/j.cnki.cjovst.2009.01.023 [7] VERESHCHAGIN K A, GORNOSTAEV P B, IVANOVA S R, et al. On the decay time of luminescent screens of picosecond image tubes when measuring repeated signals in the accumulation mode[J]. Bulletin of the Lebedev Physics Institute,2015,42(1):7-9. doi: 10.3103/S1068335615010029 [8] 石作伟. 微光像增强器荧光屏参数测试技术研究[D]. 南京: 南京理工大学, 2008.SHI Zuowei. Study on parameters test technology of fluorescent screen of low-light image intensifier [D]. Nanjing: Nanjing University of Science and Technology, 2008.. [9] 孙夏南. 微光像增强器亮度增益和余辉测试技术研究[D]. 南京: 南京理工大学, 2012.SUN Xianan. Research on luminance gain and afterglow test technology of low-light image intensifier [D]. Nanjing: Nanjing University of Science and Technology, 2012. [10] 姚泽, 程宏昌, 李涛, 等. 基于P31荧光粉的像增强器余辉测量方法研究[J]. 应用光学,2020,41(4):796-800. doi: 10.5768/JAO202041.0404002YAO Ze, CHENG Hongchang, LI Tao, et al. Study on image enhancer afterglow measurement method based on P31 phosphor[J]. Journal of Applied Optics,2020,41(4):796-800. doi: 10.5768/JAO202041.0404002 [11] 邱亚峰. 微光像增强器荧光屏发光特性及测试技术研究[D]. 南京: 南京理工大学, 2008.QIU Yafeng. Luminescence characteristics and test technology of low-light image intensifier fluorescent screen[D]. Nan jing: Nanjing University of Science and Technology, 2008. [12] 贾亮, 丛龙杰. 基于FPGA的高速数据采集系统研究[J]. 电脑与信息技术,2021,29(3):69-71. doi: 10.3969/j.issn.1005-1228.2021.03.021JIA Liang, CONG Longjie. Research on high-speed data acquisition system based on FPGA[J]. Computer & Information Technology,2021,29(3):69-71. doi: 10.3969/j.issn.1005-1228.2021.03.021 [13] 易志强, 韩宾, 江虹, 等. 基于FPGA的多通道同步实时高速数据采集系统设计[J]. 电子技术应用,2019,45(6):70-74. doi: 10.16157/j.issn.0258-7998.190460YI Zhiqiang, HAN Bin, JIANG Hong, et al. Design of multi-channel synchronous real-time high-speed data acquisition system based on FPGA[J]. Application of Electronic Technique,2019,45(6):70-74. doi: 10.16157/j.issn.0258-7998.190460 [14] 霍一, 马晓轩. 卡尔曼滤波结合遗传算法的矿井图像去噪算法研究[J]. 计算机应用与软件,2022,39(2):220-227. doi: 10.3969/j.issn.1000-386x.2022.02.036HUO Yi, MA Xiaoxuan. Research on mine image denoising algorithm based on Kalman filter combined with genetic algorithm[J]. Computer Applications and Software,2022,39(2):220-227. doi: 10.3969/j.issn.1000-386x.2022.02.036 [15] 中国人民解放军总装备部. 超二代像增强器通用规范: GJB 7351-2011[S]. 北京: 中国标准出版社, 2011.General Armament Department of Chinese People′s Liberation Army. General specification for super second generation image intensifier assembly: GJB 7351-2011 [S]. Beijing: China Standard Press, 2011. -