Automatic test system for progressive gain of dynode photomultiplier tube
-
摘要: 逐级增益是评价打拿极光电倍增管(photomultiplier tube, PMT)性能的重要参数之一,目前国内仅有一台逐级增益测试系统,依靠人工操作,测试效率不高。为提高逐级增益测试效率,设计了一套打拿极PMT逐级增益自动测试系统。该系统使用由可控光阑、电动挡板等组成的自动光源实现光源输出强度连续可调,并通过控制高压模块、分压器模块和继电器模块实现逐级电压的通断。利用精度为0.01 nA的电流计模块完成信号的采集、处理和传输,实现对逐级增益的自动测量。实验证明,该系统可有效测量打拿极PMT的逐级增益特性,测试重复性在2%以内,满足测试需求。Abstract: Progressive gain is one of the important parameters for evaluating the performance of dynode photomultiplier tube (PMT), but there is only one related test system at home, which relies on manual operation and the test efficiency is not high. In order to improve the efficiency of testing progressive gain, an automatic test system for the progressive gain of dynode PMT was designed. The continuous adjustment of the light source output intensity was achieved by an automatic light system composed of controllable disphragm, electric baffle and etc, and the on-off of the progressive voltage was controlled by the high-voltage module, the voltage divider module and the relay module. Finally, based on the galvanometer module with an accuracy of 0.01 nA, the acquisition, processing and transmission of the signal was completed, so as to realize the automatic measurement of the progressive gain. The experimental results show that the proposed system can effectively measure the progressive gain characteristics of the dynode PMT, and the test repeatability is within 2%, which meets the test requirements.
-
Key words:
- dynode photomultiplier tube /
- progressive gain /
- gain /
- automatic test
-
表 1 不同工作电压下3个PMT的逐级增益
Table 1 Progressive gain of three PMT at different operating voltages
工作电压/V 不同管号PMT的增益 9166 9171 R09289 300 3.67×102 4.84×102 1.48×102 400 5.73×103 8.01×103 1.89×103 500 3.60×104 6.87×104 1.17×104 600 1.18×106 4.07E×105 6.43×104 700 1.21×106 1.90×106 2.27×105 800 5.15×106 8.00×106 9.54×105 900 1.44×107 2.70×107 2.69×106 1000 3.50×107 7.92×107 7.20×106 1100 1.10×108 2.22×108 1.58×107 1200 2.82×108 6.76×108 4.77×107 1300 8.82×108 1.30×109 8.76×107 表 2 PPH号PMT逐级增益测量结果
Table 2 Progressive gain measurement results for PMT of PPH
级数 测试次数 重复性/% 1 2 3 4 5 6 1 6.272 6.186 6.322 6.144 6.067 6.267 1.53 2 6.483 6.527 6.484 6.482 6.541 6.535 0.44 3 5.253 5.289 5.261 5.267 5.279 5.269 0.24 4 5.735 5.679 5.624 5.595 5.649 5.629 0.87 5 2.989 3.012 3.004 3.006 3.011 3.005 0.28 6 2.719 2.739 2.741 2.748 2.744 2.745 0.38 7 4.984 4.976 4.958 4.95 4.981 4.968 0.27 8 5.334 5.363 5.347 5.365 5.379 5.367 0.30 9 3.879 3.904 3.909 3.882 3.908 3.901 0.34 10 3.138 3.138 3.125 3.150 3.130 3.140 0.28 整管增益 3.23×106 3.27×106 3.23×106 3.15×106 3.20×106 3.7×106 1.45 表 3 8160号PMT逐级增益测量结果
Table 3 Progressive gain measurement results for PMT of 8160
级数 测试次数 重复性/% 1 2 3 4 5 6 1 11.080 11.342 11.302 11.316 11.300 11.149 0.95 2 2.626 2.631 2.630 2.628 2.635 2.633 0.12 3 2.668 2.637 2.647 2.642 2.653 2.650 0.40 4 2.140 2.069 2.088 2.073 2.084 2.087 1.23 5 1.947 1.928 1.939 1.935 1.940 1.943 0.34 6 2.082 2.088 2.085 2.090 2.083 2.090 0.17 7 2.425 2.410 2.414 2.417 2.415 2.418 0.21 8 1.953 1.950 1.948 1.951 1.945 1.953 0.16 9 2.005 1.997 2.000 1.996 1.994 1.999 0.19 10 1.905 1.905 1.899 1.904 1.900 1.900 0.15 11 1.869 1.856 1.862 1.865 1.859 1.867 0.27 整管增益 2.27×104 2.18×104 2.21×104 2.20×104 2.20×104 2.21×104 1.38% 表 4 PJ号PMT逐级增益测量结果
Table 4 Progressive gain measurement results for PMT of PJ
级数 测试次数 重复性/% 1 2 3 4 5 6 1 3.821 3.843 3.817 3.998 3.844 3.833 1.78 2 4.884 4.856 5.080 4.889 5.041 4.882 1.94 3 7.052 7.140 7.090 7.099 7.086 7.048 0.48 4 7.146 7.132 7.025 7.079 7.182 7.128 0.78 5 8.511 8.582 8.499 8.468 8.477 8.502 0.47 6 6.577 6.581 6.541 6.627 6.544 6.571 0.47 7 8.85 8.845 8.850 8.868 8.755 8.842 0.46 8 6.777 6.735 6.744 6.757 6.686 6.738 0.45 9 9.400 9.450 9.436 9.343 9.305 9.398 0.59 整管增益 2.97×107 3.02×107 3.0×107 3.09×107 2.98×107 2.94×107 1.71 表 5 高压电源输出和电流计输出6次测量结果
Table 5 Six measurement results output by high-voltage power supply and galvanometer
序号 电压/V 电流/μA 序号 电压/V 电流/μA 1 996.0 1.5815 4 999.8 1.5807 2 1 001.0 1.5796 5 1 000.0 1.5823 3 998.5 1.5800 6 1 000.4 1.5803 -
[1] 张珮. 基于光电倍增管的数据采集系统设计[D]. 长春: 长春理工大学, 2017.ZHANG Pei. Design of data acquisition system based on photomultiplier tube[D]. Changchun: Changchun University of Science and Technology, 2017. [2] 赵艳, 潘超, 赵一鸣, 等. 光电倍增管寿命试验研究与系统设计[J]. 遥测遥控,2021,42(6):107-112.ZHAO Yan, PAN Chao, ZHAO Yiming, et al. Research on life test and system design for PMT photomultiplier tube[J]. Journal of Telemetry, Tracking and Command,2021,42(6):107-112. [3] 杨云开. 用于生物毒性的光电倍增管检测技术[J]. 数码世界,2019(7):47.YANG Yunkai. Photomultiplier tube detection technology for biotoxicity[J]. Digital World,2019(7):47. [4] T. Sekine, G. Delso, K. G. Zeimpekis, 等. 应用硅光电倍增检测器可以降低临床PET/MRI上使用18F-FDG的剂量[J]. 国际医学放射学杂志,2018,41(2):220.T. SEKINE, et al. Reduction of 18F-FDG dose in clinical PET/MR imaging by using silicon photomultiplier detectors[J]. International Journal of Medical Radiology,2018,41(2):220. [5] 赵富宽, 张波. PET/MRI研制及应用进展[J]. 中国医疗设备,2014,29(8):66-69. doi: 10.3969/j.issn.1674-1633.2014.08.020ZHAO Fukuan, ZHANG Bo. Development and application progress of PET/MRI[J]. China Medical Devices,2014,29(8):66-69. doi: 10.3969/j.issn.1674-1633.2014.08.020 [6] 黄臻成, 沈韩, 唐健. 中微子探测中的光学应用[J]. 物理与工程,2022,32(1):33-36.HUANG Zhencheng, SHEN Han, TANG Jian. Application of optics in neutrino detections[J]. Physics and Engineering,2022,32(1):33-36. [7] 刘茂元, 陈鑫, 念聪. 光电倍增管在地基粒子天体物理实验中的应用[J]. 知识文库,2019(7):37.LIU Maoyuan, CHEN Xin, NIAN Cong. Application of photomultiplier tubes in ground-based particle astrophysics experiments[J]. Knowledge Base,2019(7):37. [8] 王浩东. 真空紫外光电倍增管现状及发展趋势分析[J]. 真空电子技术,2022(2):23-28.WANG Haodong. Status and development trend of UV-photomultiplier tubes[J]. Vacuum Electronics,2022(2):23-28. [9] 孙建宁, 任玲, 丛晓庆, 等. 一种大尺寸微通道板型光电倍增管[J]. 红外与激光工程,2017,46(4):18-22.SUN Jianning, REN Ling, CONG Xiaoqing, et al. Large-area micro-channel plate photomultiplier tube[J]. Infrared and Laser Engineering,2017,46(4):18-22. [10] 郭乐慧, 陈萍, 李立立, 等. 光电倍增管关键技术研究进展[J]. 真空电子技术,2020(4):1-13. doi: 10.16540/j.cnki.cn11-2485/tn.2020.04.01GUO Lehui, CHEN Ping, LI Lili, et al. Research progress on key technologies of photomultiplier tubes[J]. Vacuum Electronics,2020(4):1-13. doi: 10.16540/j.cnki.cn11-2485/tn.2020.04.01 [11] 汪贵华. 光电子器件[M]. 2版. 北京: 国防工业出版社, 2014.WANG Guihua. Optoelectronic devices[M]. 2nd. Beijing: National Defense Industry Press, 2014. [12] 赵文锦. 光电倍增管的技术发展状态[J]. 光电子技术,2011,31(3):145-148. doi: 10.3969/j.issn.1005-488X.2011.03.001ZHAO Wenjin. Developments in technology of photomultipliers[J]. Optoelectronic Technology,2011,31(3):145-148. doi: 10.3969/j.issn.1005-488X.2011.03.001 [13] 宋登元, 孙同文. 光电倍增管的特性、结构及选取考虑[J]. 中国仪器仪表,1999(5):33-35.SONG Dengyuan, SUN Tongwen. Properties, structures and choosing consideration for photomultiplier tubes[J]. China Instrmentation,1999(5):33-35. [14] 中国国家标准化管理委员会. 光电倍增管总规范: GB/T12564-2008[EB]. 北京: 中国标准出版社, 2008: 16-17.Standardization Administration of China. General Specification for Photomultiplier Tubes: GB/T12564-2008[EB]. Beijing: China Standard Press, 2008: 16-17. [15] 隋成华, 杜春年, 徐丹阳. 基于卤钨灯和LED的复合光源设计与实现[J]. 浙江工业大学学报,2017,45(3):351-354. doi: 10.3969/j.issn.1006-4303.2017.03.023SUI Chenghua, DU Chunnian, XU Danyang. Design and implementation of compound light source based on halogen lamp and LEDs[J]. Journal of Zhejiang University of Technology,2017,45(3):351-354. doi: 10.3969/j.issn.1006-4303.2017.03.023 [16] 张文超, 王宇松, 卢可义. 光电倍增管(PMT)的有源偏置电路[J]. 生命科学仪器,2005,3(1):35-37. doi: 10.3969/j.issn.1671-7929.2005.01.010ZHANG Wenchao, WANG Yusong, LU Keyi. Active voltage biasing circuit for PhotoMultiplier tube(PMT)[J]. Life Science Instruments,2005,3(1):35-37. doi: 10.3969/j.issn.1671-7929.2005.01.010 [17] 胡孟春, 叶文英, 周殿忠, 等. 两种光电倍增管增益与总工作电压的关系研究[J]. 核电子学与探测技术,2004,24(3):239-241. doi: 10.3969/j.issn.0258-0934.2004.03.006HU Mengchun, YE Wenying, ZHOU Dianzhong, et al. Study of the relationship photomultiplier tube gain with sum work voltage[J]. Nuclear Electronics & Detection Technology,2004,24(3):239-241. doi: 10.3969/j.issn.0258-0934.2004.03.006 -