留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子倍增器脉冲信号图形化离线分析软件

彭华兴 闫保军 刘术林 张斌婷 韦雯露

彭华兴, 闫保军, 刘术林, 张斌婷, 韦雯露. 电子倍增器脉冲信号图形化离线分析软件[J]. 应用光学, 2022, 43(6): 1107-1116. doi: 10.5768/JAO202243.0604009
引用本文: 彭华兴, 闫保军, 刘术林, 张斌婷, 韦雯露. 电子倍增器脉冲信号图形化离线分析软件[J]. 应用光学, 2022, 43(6): 1107-1116. doi: 10.5768/JAO202243.0604009
PENG Huaxing, YAN Baojun, LIU Shulin, ZHANG Binting, WEI Wenlu. Graphical offline analysis software of electron multiplier pulse signals[J]. Journal of Applied Optics, 2022, 43(6): 1107-1116. doi: 10.5768/JAO202243.0604009
Citation: PENG Huaxing, YAN Baojun, LIU Shulin, ZHANG Binting, WEI Wenlu. Graphical offline analysis software of electron multiplier pulse signals[J]. Journal of Applied Optics, 2022, 43(6): 1107-1116. doi: 10.5768/JAO202243.0604009

电子倍增器脉冲信号图形化离线分析软件

doi: 10.5768/JAO202243.0604009
基金项目: 国家自然科学基金(11975017,11675278,11535014);核探测与核电子学国家重点实验室项目(SKLPDE-ZZ-202215)
详细信息
    作者简介:

    彭华兴(1997—),男,硕士研究生,主要从事粒子探测技术图形化分析。E-mail:penghuaxing@ihep.ac.cn

    通讯作者:

    闫保军(1985—),男,博士,副研究员,主要从事电子倍增器材料和器件研究。E-mail:yanbj@ihep.ac.cn

    刘术林(1963—),男,研究员,主要从事微通道板探测器研究。E-mail:liusl@ihep.ac.cn

  • 中图分类号: TN15

Graphical offline analysis software of electron multiplier pulse signals

  • 摘要: 电子倍增器(electron multiplier,EM)工作于脉冲状态下,其阳极上输出离散的信号,考虑到电子倍增过程具有一定的统计性规律,研究EM在脉冲状态下的性能参数,需要对阳极输出的脉冲信号进行大量测试和分析。以基于打拿极电子倍增器的光电倍增管(photomultiplier tubes,PMT)为例,通过改变入射光强度使其工作在脉冲状态,利用高带宽、高采样率示波器采集其阳极输出信号。基于Python开发了一种图形化数据分析软件,用来对示波器采集的大量脉冲信号数据进行离线分析,从中可以获得PMT的电荷积分谱、增益、分辨率、后脉冲率、前沿时间等性能参数,软件采用模块化结构,根据不同的测试需求各个模块可以单独工作。该软件可以快速实现EM在脉冲状态下的性能参数分析,为EM制作工艺的优化及其在微弱信号探测领域中的应用提供了一种便利的分析手段。
  • 图  1  程序界面截图

    Fig.  1  Screenshot of program interface

    图  2  程序流程图

    Fig.  2  Flow chart of program

    图  3  脉冲信号波形及积分区间选取

    Fig.  3  Diagram of pulse signal waveform and integration interval selection

    图  4  电荷积分谱

    Fig.  4  Charge integral spectrum

    图  5  电荷积分谱及其拟合分析

    Fig.  5  Charge integral spectrum and fitting analysis

    图  6  后脉冲测试及分析

    Fig.  6  Post-pulse test and analysis

    图  7  前沿时间分析及拟合优度

    Fig.  7  Leading-edge time analysis and goodness of fitting

    图  8  测试装置

    Fig.  8  Physical drawing and schematic diagram of testing device

    图  9  示波器和QDC分别测量PMT结果对比

    Fig.  9  Comparison of measurement results for PMT by oscilloscope and QDC

    图  10  后脉冲时间和电荷量分布

    Fig.  10  Post-pulse time and charge distribution

    图  11  暗噪声与后脉冲波形

    Fig.  11  Dark noise and post-pulse waveform

    图  12  后脉冲率和阈值的关系

    Fig.  12  Relationship between post-pulse rate and threshold

    图  13  前沿时间分布

    Fig.  13  Leading-edge time distribution

    图  14  基线扣除讨论

    Fig.  14  Baseline deduction discussion

    表  1  信号发生器通道1和通道2的参数

    Table  1  Parameters for signal generator channel 1 and channel 2

    通道频率/ kHz幅值/ V延时/ ns脉冲宽度/ ns
    113.174050
    21−0.8255300
    下载: 导出CSV

    表  2  示波器测量结果

    Table  2  Measurement results of oscilloscope

    电压/V$ {\mathrm{q}}_{1} $$ {\mathrm{\sigma }}_{1} $$ \mathrm{\mu } $$ {{q}}_{{\rm{real}}} $/C增益分辨率
    12501.992730.7558920.2369463.98546E-132490912.50.379324846
    13002.53470.9241340.2292745.0694E-1331683750.364593048
    13503.003321.071090.2443166.00664E-1337541500.356635324
    14003.51851.165210.2228927.037E-1343981250.33116669
    14504.359951.347280.2091328.7199E-135449937.50.309012718
    15005.657531.754770.2583431.13151E-127071912.50.31016539
    15506.119771.736340.187441.22395E-127649712.50.283726349
    下载: 导出CSV

    表  3  QDC测量结果

    Table  3  Measurement results of QDC

    电压/V$ {\mathrm{q}}_{1} $$ {\mathrm{\sigma }}_{1} $$ \mathrm{\mu } $$ {{q}}_{{\rm{real}}} $/C增益分辨率
    125012.57954.111520.1989413.9399E-132462437.1250.326842879
    130015.52504.770350.1881264.86243E-133039018.7500.307268921
    135019.23115.691740.1866186.02318E-133764487.8250.295965389
    140022.79966.716700.1815187.14083E-134463021.7000.294597274
    145028.43698.406800.2021618.90644E-135566523.1750.295629974
    150033.81029.410060.1870011.05894E-126618346.6500.278320152
    155040.676811.364500.1951361.27400E-127962483.6000.279385301
    下载: 导出CSV
  • [1] 陈旭浪, 党小刚, 郭欣达, 等. 基于三代微光ICCD成像装置的目标对比度影响因素测试分析[J]. 应用光学,2020,41(6):1241-1246. doi: 10.5768/JAO202041.0603004

    CHEN Xulang, DANG Xiaogang, GUO Xinda, et al. Test and analysis of factors influncing target contrast ratio based on 3rd generation LLL ICCD imaging device[J]. Journal of Applied Optics,2020,41(6):1241-1246. doi: 10.5768/JAO202041.0603004
    [2] 孙默涵, 钱芸生, 任莹楠, 等. 基于自动亮度控制模型的门控型微光像增强器荧光屏亮度研究[J]. 光子学报,2022,51(3):163-172.

    SUN Mohan, QIAN Yunsheng, REN Yingnan, et al. Brightness of the screen of gated low light level image intensifier based on automatic brightness control model[J]. Acta Photonica Sinica,2022,51(3):163-172.
    [3] 李晓峰, 常乐, 刘倍宏, 等. 超二代像增强器分辨力随输入照度变化研究[J]. 红外技术,2022,44(4):377-382.

    LI Xiaofeng, CHANG Le, LIU Beihong, et al. Analysis of resolution change of the super gen. Ⅱ image intensifier with input illumination variation[J]. Infrared Technology,2022,44(4):377-382.
    [4] GYS T. Micro-channel plates and vacuum detectors[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2015,787:254-260. doi: 10.1016/j.nima.2014.12.044
    [5] 张宣妮, 赵宝升. 一种新型真空型紫外成像探测器[J]. 应用光学,2007,28(2):159-164. doi: 10.3969/j.issn.1002-2082.2007.02.010

    ZHANG Xuanni, ZHAO Baosheng. New vacuum ultraviolet imaging detector[J]. Journal of Applied Optics,2007,28(2):159-164. doi: 10.3969/j.issn.1002-2082.2007.02.010
    [6] 郭美如, 张伟文, 李得天, 等. 空间小型磁偏转质谱计的研制[J]. 真空科学与技术学报,2015,35(4):381-385. doi: 10.13922/j.cnki.cjovst.2015.04.01

    GUO Meiru, ZHANG Weiwen, LI Detian, et al. Development of miniaturized magnetic sector mass spectrometer for space exploration[J]. Chinese Journal of Vacuum Science and Technology,2015,35(4):381-385. doi: 10.13922/j.cnki.cjovst.2015.04.01
    [7] 杨芃原, 李顺祥, 贾滨, 等. 飞行时间质谱和高性能电子学控制技术[J]. 质谱学报,2020,41(1):1-10. doi: 10.7538/zpxb.2019.0026

    YANG Pengyuan, LI Shunxiang, JIA Bin, et al. Time-of-flight mass spectrometry and high-performance electronics control technology[J]. Journal of Chinese Mass Spectrometry Society,2020,41(1):1-10. doi: 10.7538/zpxb.2019.0026
    [8] APPONI A, PANDOLFI F, RAGO I, et al. Absolute efficiency of a two-stage microchannel plate for electrons in the 30 eV~900 eV energy range[J]. Measurement Science and Technology,2022,33:025102. doi: 10.1088/1361-6501/ac3d07
    [9] YANG Yuzhen, YAN Baojun, LIU Shulin, et al. MCP performance improvement using alumina thin film[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2017,868:43-47.
    [10] YANG Yuzhen, LIU Shulin, ZHAO Tianchi, et al. Single electron counting using a dual MCP assembly[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2016,830:438-443.
    [11] MA K J, KANG W G, AHN J K, et al. Time and amplitude of afterpulse measured with a large size photomultiplier tube[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2011,629(1):93-100.
    [12] AGUILAR J A, ALBERT A, AMELI F, et al. Study of large hemispherical photomultiplier tubes for the ANTARES neutrino telescope[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2005,555(1/2):132-141.
    [13] 李楠. JUNO中心探测器研制及SPMT系统的一些研究[D]. 北京: 中国科学院大学, 2019.

    LI Nan. R&D of JUNO central detector and some studies for SPMT system[D]. Beijing: University of Chinese Academy of Sciences, 2019.
    [14] 罗凤姣. JUNO PMT 输出信号的优化及其对中心探测器性能的影响[D]. 北京: 中国科学院大学, 2018.

    LUO Fengjiao. Optimization of JUNO PMT output signal and its effects on the performances of the central detector[D]. Beijing: University of Chinese Academy of Sciences, 2018.
    [15] BELLAMY E H, BELLETTINI G, BUDAGOV J, et al. Absolute calibration and monitoring of a spectrometric channel using a photomultiplier[J]. Nuclear Instruments and Methods in Physics Research A,1994,339(3):468-476. doi: 10.1016/0168-9002(94)90183-X
    [16] WIZA J. Microchannel plate detectors[J]. Nuclear Instruments and Methods,1979,162:587-601. doi: 10.1016/0029-554X(79)90734-1
    [17] 赵晓坤. LHAASO实验中大动态范围光电倍增管性能研究[D]. 合肥: 中国科学技术大学, 2017.

    ZHAO Xiaokun. Study on performance of large dynamic range photomultiplier tube for LHAASO[D]. Hefei: University of Science and Technology of China, 2017.
    [18] ZHAO X, TANG Z, LI C, et al. Afterpulse measurement for 8-inch candidate PMTs for LHAASO[J]. Journal of Instrumentation,2016,11:T05002. doi: 10.1088/1748-0221/11/05/T05002
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  38
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-18
  • 修回日期:  2022-09-05
  • 网络出版日期:  2022-09-09
  • 刊出日期:  2022-11-14

目录

    /

    返回文章
    返回