Graphical offline analysis software of electron multiplier pulse signals
-
摘要: 电子倍增器(electron multiplier,EM)工作于脉冲状态下,其阳极上输出离散的信号,考虑到电子倍增过程具有一定的统计性规律,研究EM在脉冲状态下的性能参数,需要对阳极输出的脉冲信号进行大量测试和分析。以基于打拿极电子倍增器的光电倍增管(photomultiplier tubes,PMT)为例,通过改变入射光强度使其工作在脉冲状态,利用高带宽、高采样率示波器采集其阳极输出信号。基于Python开发了一种图形化数据分析软件,用来对示波器采集的大量脉冲信号数据进行离线分析,从中可以获得PMT的电荷积分谱、增益、分辨率、后脉冲率、前沿时间等性能参数,软件采用模块化结构,根据不同的测试需求各个模块可以单独工作。该软件可以快速实现EM在脉冲状态下的性能参数分析,为EM制作工艺的优化及其在微弱信号探测领域中的应用提供了一种便利的分析手段。Abstract: When the electron multiplier (EM) works in a pulse condition, the discrete signals are output on its anode. Since the electron multiplication process has a certain statistical law, to study the performance parameters of the EM in a pulse condition, the substantive tests and analyses of the pulsed signal output from the anode were required. The photomultiplier tube (PMT) based on a dynode EM was taken as an example, by changing the incident light intensity to make it work in a pulse condition, a high-bandwidth and high-sampling-rate oscilloscope was used to collect its anode output signal. A graphical data analysis software was developed based on Python to perform the offline analysis on a large number of pulse signal data collected by an oscilloscope, and performance parameters such as charge integral spectrum, gain, resolution, post-pulse rate, and leading-edge time of PMT could be obtained. The software adopted a modular structure, and each module could work independently according to the different test requirements. The proposed software can quickly analyze the performance parameters of the EM in a pulse condition, and provides a convenient analysis method for the optimization of the EM fabrication process and its application in the field of weak signal detection.
-
Key words:
- electron multiplier /
- Python /
- pulse condition /
- analysis software /
- photomultiplier tube /
- post pulse
-
表 1 信号发生器通道1和通道2的参数
Table 1 Parameters for signal generator channel 1 and channel 2
通道 频率/ kHz 幅值/ V 延时/ ns 脉冲宽度/ ns 1 1 3.174 0 50 2 1 −0.8 255 300 表 2 示波器测量结果
Table 2 Measurement results of oscilloscope
电压/V $ {\mathrm{q}}_{1} $ $ {\mathrm{\sigma }}_{1} $ $ \mathrm{\mu } $ $ {{q}}_{{\rm{real}}} $/C 增益 分辨率 1250 1.99273 0.755892 0.236946 3.98546E-13 2490912.5 0.379324846 1300 2.5347 0.924134 0.229274 5.0694E-13 3168375 0.364593048 1350 3.00332 1.07109 0.244316 6.00664E-13 3754150 0.356635324 1400 3.5185 1.16521 0.222892 7.037E-13 4398125 0.33116669 1450 4.35995 1.34728 0.209132 8.7199E-13 5449937.5 0.309012718 1500 5.65753 1.75477 0.258343 1.13151E-12 7071912.5 0.31016539 1550 6.11977 1.73634 0.18744 1.22395E-12 7649712.5 0.283726349 表 3 QDC测量结果
Table 3 Measurement results of QDC
电压/V $ {\mathrm{q}}_{1} $ $ {\mathrm{\sigma }}_{1} $ $ \mathrm{\mu } $ $ {{q}}_{{\rm{real}}} $/C 增益 分辨率 1250 12.5795 4.11152 0.198941 3.9399E-13 2462437.125 0.326842879 1300 15.5250 4.77035 0.188126 4.86243E-13 3039018.750 0.307268921 1350 19.2311 5.69174 0.186618 6.02318E-13 3764487.825 0.295965389 1400 22.7996 6.71670 0.181518 7.14083E-13 4463021.700 0.294597274 1450 28.4369 8.40680 0.202161 8.90644E-13 5566523.175 0.295629974 1500 33.8102 9.41006 0.187001 1.05894E-12 6618346.650 0.278320152 1550 40.6768 11.36450 0.195136 1.27400E-12 7962483.600 0.279385301 -
[1] 陈旭浪, 党小刚, 郭欣达, 等. 基于三代微光ICCD成像装置的目标对比度影响因素测试分析[J]. 应用光学,2020,41(6):1241-1246. doi: 10.5768/JAO202041.0603004CHEN Xulang, DANG Xiaogang, GUO Xinda, et al. Test and analysis of factors influncing target contrast ratio based on 3rd generation LLL ICCD imaging device[J]. Journal of Applied Optics,2020,41(6):1241-1246. doi: 10.5768/JAO202041.0603004 [2] 孙默涵, 钱芸生, 任莹楠, 等. 基于自动亮度控制模型的门控型微光像增强器荧光屏亮度研究[J]. 光子学报,2022,51(3):163-172.SUN Mohan, QIAN Yunsheng, REN Yingnan, et al. Brightness of the screen of gated low light level image intensifier based on automatic brightness control model[J]. Acta Photonica Sinica,2022,51(3):163-172. [3] 李晓峰, 常乐, 刘倍宏, 等. 超二代像增强器分辨力随输入照度变化研究[J]. 红外技术,2022,44(4):377-382.LI Xiaofeng, CHANG Le, LIU Beihong, et al. Analysis of resolution change of the super gen. Ⅱ image intensifier with input illumination variation[J]. Infrared Technology,2022,44(4):377-382. [4] GYS T. Micro-channel plates and vacuum detectors[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2015,787:254-260. doi: 10.1016/j.nima.2014.12.044 [5] 张宣妮, 赵宝升. 一种新型真空型紫外成像探测器[J]. 应用光学,2007,28(2):159-164. doi: 10.3969/j.issn.1002-2082.2007.02.010ZHANG Xuanni, ZHAO Baosheng. New vacuum ultraviolet imaging detector[J]. Journal of Applied Optics,2007,28(2):159-164. doi: 10.3969/j.issn.1002-2082.2007.02.010 [6] 郭美如, 张伟文, 李得天, 等. 空间小型磁偏转质谱计的研制[J]. 真空科学与技术学报,2015,35(4):381-385. doi: 10.13922/j.cnki.cjovst.2015.04.01GUO Meiru, ZHANG Weiwen, LI Detian, et al. Development of miniaturized magnetic sector mass spectrometer for space exploration[J]. Chinese Journal of Vacuum Science and Technology,2015,35(4):381-385. doi: 10.13922/j.cnki.cjovst.2015.04.01 [7] 杨芃原, 李顺祥, 贾滨, 等. 飞行时间质谱和高性能电子学控制技术[J]. 质谱学报,2020,41(1):1-10. doi: 10.7538/zpxb.2019.0026YANG Pengyuan, LI Shunxiang, JIA Bin, et al. Time-of-flight mass spectrometry and high-performance electronics control technology[J]. Journal of Chinese Mass Spectrometry Society,2020,41(1):1-10. doi: 10.7538/zpxb.2019.0026 [8] APPONI A, PANDOLFI F, RAGO I, et al. Absolute efficiency of a two-stage microchannel plate for electrons in the 30 eV~900 eV energy range[J]. Measurement Science and Technology,2022,33:025102. doi: 10.1088/1361-6501/ac3d07 [9] YANG Yuzhen, YAN Baojun, LIU Shulin, et al. MCP performance improvement using alumina thin film[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2017,868:43-47. [10] YANG Yuzhen, LIU Shulin, ZHAO Tianchi, et al. Single electron counting using a dual MCP assembly[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2016,830:438-443. [11] MA K J, KANG W G, AHN J K, et al. Time and amplitude of afterpulse measured with a large size photomultiplier tube[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2011,629(1):93-100. [12] AGUILAR J A, ALBERT A, AMELI F, et al. Study of large hemispherical photomultiplier tubes for the ANTARES neutrino telescope[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2005,555(1/2):132-141. [13] 李楠. JUNO中心探测器研制及SPMT系统的一些研究[D]. 北京: 中国科学院大学, 2019.LI Nan. R&D of JUNO central detector and some studies for SPMT system[D]. Beijing: University of Chinese Academy of Sciences, 2019. [14] 罗凤姣. JUNO PMT 输出信号的优化及其对中心探测器性能的影响[D]. 北京: 中国科学院大学, 2018.LUO Fengjiao. Optimization of JUNO PMT output signal and its effects on the performances of the central detector[D]. Beijing: University of Chinese Academy of Sciences, 2018. [15] BELLAMY E H, BELLETTINI G, BUDAGOV J, et al. Absolute calibration and monitoring of a spectrometric channel using a photomultiplier[J]. Nuclear Instruments and Methods in Physics Research A,1994,339(3):468-476. doi: 10.1016/0168-9002(94)90183-X [16] WIZA J. Microchannel plate detectors[J]. Nuclear Instruments and Methods,1979,162:587-601. doi: 10.1016/0029-554X(79)90734-1 [17] 赵晓坤. LHAASO实验中大动态范围光电倍增管性能研究[D]. 合肥: 中国科学技术大学, 2017.ZHAO Xiaokun. Study on performance of large dynamic range photomultiplier tube for LHAASO[D]. Hefei: University of Science and Technology of China, 2017. [18] ZHAO X, TANG Z, LI C, et al. Afterpulse measurement for 8-inch candidate PMTs for LHAASO[J]. Journal of Instrumentation,2016,11:T05002. doi: 10.1088/1748-0221/11/05/T05002 -