High-precision detection technology of NO concentration based on UV differential-adaptive interference cancellation
-
摘要: 为实现机动车尾气高精度监测,提出一种高精度宽量程NO测量方法。针对尾气中SO2及NO在紫外波段存在吸收峰重合从而无法直接进行单组分气体反演问题,首先用紫外差分光学吸收光谱(ultra-violet differential optical absorption spectroscopy, UV-DOAS)法计算得到混合气体在NO敏感波段(200 nm~230 nm)的差分光学密度(differential optical density, DOD),并引入自适应干扰对消技术以实现混合气体DOD的快速分离,最终利用最小二乘法对分离出的NO进行浓度反演。该方法可实现100×10−6~3 000×10−6范围内NO浓度(气体的体积分数)快速反演,经测试,在100×10−6~200×10−6浓度范围内反演相对误差绝对值小于10%,在300×10−6~3000×10−6浓度范围内,反演相对误差绝对值小于5%。该方法具有测量量程大、速度快的特点,可满足汽车尾气中3 000×10−6范围内NO浓度测量要求。Abstract: In order to realize high-precision monitoring of vehicle emission, a high-precision and wide-range NO measurement method was proposed. Aiming at the problem that the absorption peaks of SO2 and NO in emission overlapping in the UV band, and it was impossible to directly perform single-component gas inversion, the differential optical density (DOD) of mixed gas in the NO sensitive band (200 nm~230 nm) was first calculated by the ultraviolet differential optical absorption spectroscopy (UV-DOAS) method. Then, the adaptive interference cancellation technology was introduced to achieve rapid separation of mixed gas DOD. Finally, the least square method was used to perform the concentration inversion of separated NO. This method could achieve rapid inversion of NO concentration (volume fraction of gas) in the range of 100×10−6 to 3 000×10−6. After testing, the absolute value of the relative error of inversion is less than 10% in the concentration range of 100×10−6 to 200×10−6, and less than 5% in the concentration range of 300×10−6 to 3 000×10−6. This method has the characteristics of large measurement range and fast speed, and can meet the measurement requirements of NO concentration in the range of 3 000×10−6 in vehicle emission.
-
表 1 参考曲线中不同浓度气体DOD占比
Table 1 DOD ratio of gas at different concentrations in reference curves
DOD SO2浓度值/10−6 10 20 30 40 50 60 70 80 参考曲线1 0.6 0.1 0.1 0.1 0.1 0 0 0 参考曲线2 0 0.1 0.1 0.6 0.1 0.1 0 0 参考曲线3 0 0 0 0.1 0.1 0.1 0.6 0.1 表 2 第1组实验NO差分光学厚度计算值与标准值相关系数
Table 2 Correlation coefficient between calculated value and standard value of NO differential optical thickness in the first group of experiments
标准值(NO/SO2)/10−6 200/10 200/20 200/30 200/40 200/50 200/60 200/70 200/80 相关系数
(参考曲线1)0.998 0.999 0.997 0.994 0.990 0.984 0.979 0.974 相关系数
(参考曲线2)0.997 0.997 0.998 0.998 0.996 0.994 0.991 0.986 相关系数
(参考曲线3)0.993 0.991 0.991 0.993 0.996 0.998 0.997 0.996 表 3 第2组实验NO计算结果
Table 3 Calculation results of NO in the second group of experiments
标准值(NO/SO2)/10−6 100/15 200/40 300/30 300/40 400/10 400/60 500/20 500/40 与标准曲线相关系数 0.992 0.993 0.993 0.995 0.995 0.998 0.995 0.996 反演NO浓度c/10−6 93.35 183.44 294.82 293.55 391.74 387.66 493.75 490.89 相对误差ε/% −6.65 −8.28 −1.73 −2.15 −2.07 −3.09 −1.25 −1.82 表 4 第2组实验NO计算结果
Table 4 Calculation results of NO in the second group of experiments
标准值 (NO/SO2)/10−6 600/25 600/35 700/40 700/70 800/45 800/80 1 000/50 1 500/35 与标准曲线相关系数 0.995 0.996 0.997 0.999 0.998 0.998 0.998 0.997 反演NO浓度c/10−6 601.95 597.72 687.06 691.85 781.60 786.69 986.66 1 468.05 相对误差ε/% 0.33 −0.38 −1.85 −1.16 −2.30 −1.66 −1.33 −2.13 表 5 第2组实验NO计算结果
Table 5 Calculation results of NO in the second group of experiments
标准值(NO/SO2)/10−6 1 700/45 1 900/35 2 100/70 2 300/80 2 500/50 2 700/25 2 900/40 3 000/55 相关系数 0.998 0.997 0.999 0.998 0.998 0.997 0.997 0.999 反演NO浓度c/10−6 1 647.89 1 856.46 2 041.95 2 218.30 2 449.08 2 595.23 2 776.82 2 891.79 相对误差ε/% 3.07 2.29 2.76 3.55 2.04 3.88 4.25 3.61 -
[1] 中华人民共和国公安部交通管理局. 全国机动车保有量及驾驶人数据统计(截止2021)[EB/OL]. http://www.gov.cn/xinwen/2022-01/11/content_5667669.htm, 2022.Ministry of Public Security, PRC Traffic Management Bureau. National motor vehicle ownership and driver data statistics[EB/OL]. http://www.gov.cn/xinwen/2022-01/11/content_5667669.htm, 2022. [2] 中华人民共和国生态环境部&国家统计局及农村农业部. 第二次全国污染源普查公报[EB/OL]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202006/W020200610353985963290.pdf, 2020.Ministry of Ecology and Environment, PRC & National Bureau of Statistics & Ministry of Rural Agriculture. Bulletin of the second national census of pollution sources[EB/OL]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202006/W020200610353985963290.pdf, 2020. [3] ZHOU Yong, GAO Chao, GUO Yongcai. UV assisted ultrasensitive trace NO2 gas sensing based on few-layer MoS2 nanosheet–ZnO nanowire heterojunctions at room temperature[J]. Journal of Materials Chemistry A,2018,6(22):10286-10296. doi: 10.1039/C8TA02679C [4] ZHOU Yong, LIU Guoqing, ZHU Xiangyi, et al. Ultrasensitive NO2 gas sensing based on rGO/MoS2 nanocomposite film at low temperature[J]. Sensors and Actuators B:Chemical,2017,251:280-290. doi: 10.1016/j.snb.2017.05.060 [5] AFOLARANMI S O, RAMIS F B, MARTINEZ L J L. Technology review: prototyping platforms for monitoring ambient conditions[J]. International Journal of Environmental Health Research,2018,28(3):253-279. doi: 10.1080/09603123.2018.1468423 [6] STOCKWELL C E, KUPC A, WITKOWSKI B, et al. Characterization of a catalyst-based conversion technique to measure total particulate nitrogen and organic carbon and comparison to a particle mass measurement instrument[J]. Atmospheric Measurement Techniques,2018,11(5):2749-2768. doi: 10.5194/amt-11-2749-2018 [7] MIRONENKO V R, KURITSYN Y A, LIGER V V, et al. Data processing algorithm for diagnostics of combustion using diode laser absorption spectrometry[J]. Applied Spectroscopy,2018,72(2):199-208. doi: 10.1177/0003702817732252 [8] QU Z, WERHAHN O, EBERT V. Thermal boundary layer effects on line-of-sight tunable diode laser absorption spectroscopy (TDLAS) gas concentration measurements[J]. Applied Spectroscopy,2018,72(6):853-862. doi: 10.1177/0003702817752112 [9] 曲奉东. 基于纳米尺度金属氧化物异质结构的气体传感器的研究[D]. 吉林: 吉林大学, 2020.QU Fengdong. Research on gas sensors based on nanoscale metal oxide heterostructures[D]. Jilin: Jilin University, 2020. [10] DINH T, KIM D, AHN J, et al. A potential approach to compensate the gas Interference for the analysis of NO by a non-dispersive infrared technique[J]. Analytical Chemistry,2020,92(18):12152-12159. doi: 10.1021/acs.analchem.0c00471 [11] SUN W Y, ZENG Y, LIU Q W. Cross-interference correction and simultaneous multi-gas analysis based on infrared absorption[J]. Chinese Physics B,2012,21(9):168-175. [12] WANG Hairong, ZHANG Wei, YOU Liudong, et al. Back propagation neural network model for temperature and humidity compensation of a non dispersive infrared methane sensor[J]. Instrumentation science & technology,2013,41(6):608-618. [13] GUO Yuchen, QIU Xuanbing, LI Ning, et al. A portable laser-based sensor for detecting H2S in domestic natural gas[J]. Infrared Physics & Technology,2020,105:103153. [14] HEDLEY K J, SHEPSON P B, BARRFFI L, et al. An evaluation of integrating techniques for measuring atmospheric nitrogen dioxide[J]. International Journal of Environmental Analytical Chemistry,1994,54(3):167-181. doi: 10.1080/03067319408034087 [15] LI Jingsong, YU Benli, FISCHER H. Wavelet transform based on the optimal wavelet pairs for tunable diode laser absorption spectroscopy signal processing[J]. Applied Spectroscopy,2015,69(4):496-506. doi: 10.1366/14-07629 [16] MAURELLIS A N, LANG R, VAN D Z. A new DOAS parameterization for retrieval of trace gases with highly‐structured absorption spectra[J]. Geophysical Research Letters,2000,27(24):4069-4072. doi: 10.1029/2000GL011825 [17] WANG H S, ZHANG Y G, WU S H, et al. Using broadband absorption spectroscopy to measure concentration of sulfur dioxide[J]. Applied Physics B,2010,100(3):637-641. doi: 10.1007/s00340-010-4151-2 [18] XU Feng, ZHANG Yungang, SOMESFALEAN G, et al. Broadband spectroscopic sensor for real-time monitoring of industrial SO2 emissions[J]. Applied Optics,2007,46(13):2503-2506. doi: 10.1364/AO.46.002503 [19] ZHAO Yu, WANG Xianpei, DAI Dangdang, et al. Partial discharge early-warning through ultraviolet spectroscopic detection of SO2[J]. Measurement Science and Technology,2014,25(3):035002. doi: 10.1088/0957-0233/25/3/035002 [20] 吕传明. 基于 DOAS 烟气在线监测系统的应用研究[D]. 天津: 天津大学, 2013.LYU Chuanming. Research on the application of continuous emission monitoring systems based on DOAS [D]. Tianjin: Tianjin University, 2013. [21] 王艳萍, 郭永彩, 凡凤莲, 等. 低浓度 NO 和 SO2 混合气体的测量方法研究[J]. 中国测试,2018,44(11):56-60. doi: 10.11857/j.issn.1674-5124.2018.11.010WANG Yanping, GUO Yongcai, FAN Fenglian, et al. Research on measure method of low concentration NO and SO2 gas mixtures[J]. China Measurement & Test,2018,44(11):56-60. doi: 10.11857/j.issn.1674-5124.2018.11.010 [22] PENG Bo, ZHOU Yong, LIU Guoqing, et al. An ultra-sensitive detection system for sulfur dioxide and nitric oxide based on improved differential optical absorption spectroscopy method[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2020,233:118169. doi: 10.1016/j.saa.2020.118169 [23] 周斌, 刘文清, 齐峰, 等. 差分吸收光谱法测量大气污染的浓度反演方法研究[J]. 物理学报,2001(9):1818-1823. doi: 10.3321/j.issn:1000-3290.2001.09.036ZHOU Bin, LIU Wenqing, QI Feng, et al. Research on concentration inversion method for air pollution measurement by differential absorption spectrometry[J]. Acta Physica Sinica,2001(9):1818-1823. doi: 10.3321/j.issn:1000-3290.2001.09.036 [24] 刘新元, 谢柏青, 戴远东, 等. 射频SQUID心磁图数据自适应滤波研究[J]. 物理学报,2005(4):1937-1942. doi: 10.3321/j.issn:1000-3290.2005.04.085LIU Xinyuan, XIE Baiqing, DAI Yuandong, et al. Research on adaptive filtering of RF SQUID magnetocardiogram data[J]. Acta Physica Sinica,2005(4):1937-1942. doi: 10.3321/j.issn:1000-3290.2005.04.085 [25] 孟晋丽, 傅有光, 陈翼, 等. 基于自适应滤波的雷达目标-干扰分离技术[J]. 现代雷达,2015,37(4):39-42. doi: 10.3969/j.issn.1004-7859.2015.04.009MENG Jinli, FU Youguang, CHEN Yi, et al. Radar target-interference separation technology based on adaptive filtering[J]. Modern Radar,2015,37(4):39-42. doi: 10.3969/j.issn.1004-7859.2015.04.009 [26] 高鹰, 谢胜利. 一种变步长LMS自适应滤波算法及分析[J]. 电子学报,2001(8):1094-1097. doi: 10.3321/j.issn:0372-2112.2001.08.023GAO Ying, XIE Shengli. A variable step size LMS adaptive filtering algorithm and analysis[J]. Acta Electronica Sinica,2001(8):1094-1097. doi: 10.3321/j.issn:0372-2112.2001.08.023 [27] 靳翼, 邵怀宗. 一种新的变步长LMS自适应滤波算法及其仿真[J]. 信号处理,2010,26(9):1385-1388. doi: 10.3969/j.issn.1003-0530.2010.09.018JIN Yi, SHAO Huaizong. A new variable-step LMS adaptive filtering algorithm and its simulation[J]. Journal of Signal Processing,2010,26(9):1385-1388. doi: 10.3969/j.issn.1003-0530.2010.09.018 [28] 程学珍, 徐景东, 卫阿盈, 等. RLS自适应滤波在信号消噪中的应用[J]. 测试科学与仪器,2014,5(1):32-36.CHENG Xuezhen, XU Jingdong, WEI Aying, et al. Application of RLS adaptive filtering in signal denoising[J]. Journal of Measurement Science and Instrumentation,2014,5(1):32-36. [29] 马国栋, 阎树田, 贺成柱, 等. 基于LMS算法与RLS算法自适应滤波及仿真分析[J]. 电子设计工程,2014,22(6):43-45. doi: 10.3969/j.issn.1674-6236.2014.06.014MA Guodong, YAN Shutian, HE Chengzhu, et al. Adaptive filtering and simulation analysis based on LMS algorithm and RLS algorithm[J]. Electronic Design Engineering,2014,22(6):43-45. doi: 10.3969/j.issn.1674-6236.2014.06.014 -