留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高灵敏光纤光栅加速度检波器理论模型研究

刘钦朋 何雪 贾振安 傅海威 高宏 禹大宽

刘钦朋, 何雪, 贾振安, 傅海威, 高宏, 禹大宽. 高灵敏光纤光栅加速度检波器理论模型研究[J]. 应用光学.
引用本文: 刘钦朋, 何雪, 贾振安, 傅海威, 高宏, 禹大宽. 高灵敏光纤光栅加速度检波器理论模型研究[J]. 应用光学.
LIU Qin-peng, HE Xue, JIA Zhen-an, FU Hai-wei, GAO Hong, YU Da-kuan. Research on Theoretical Model of High Sensitivity Fiber Bragg Grating Accelerometer[J]. Journal of Applied Optics.
Citation: LIU Qin-peng, HE Xue, JIA Zhen-an, FU Hai-wei, GAO Hong, YU Da-kuan. Research on Theoretical Model of High Sensitivity Fiber Bragg Grating Accelerometer[J]. Journal of Applied Optics.

高灵敏光纤光栅加速度检波器理论模型研究

基金项目: 国家自然科学基金专项项目(61327012)、陕西西省自然科学基础研究计划项目(2016JM6055)、陕西省教育厅重点实验室科研计划项目(17JS105)、陕西省教育厅科研计划项目(18JS093)
详细信息
    作者简介:

    刘钦朋(1977—),男,博士,副教授,硕士生导师。主要从事光纤传感理论及其应用技术研究。Email:lqp1977@163.com

  • 中图分类号: TP212.14; P631.4

Research on Theoretical Model of High Sensitivity Fiber Bragg Grating Accelerometer

  • 摘要: 针对两点封装,建立光纤光栅加速度检波器通用模型,理论推导加速度检波器灵敏度和谐振频率的解析表达式,深入研究加速度灵敏度和谐振频率的影响因素,讨论封装光纤刚度系数与检波器结构刚度系数之比对检波器响应特性的影响,并分析刚度比分别在0~1、0~100范围随着等效质量的增大(0~100 g),加速度灵敏度和谐振频率的制约关系,及在0~500 Hz(中低频)和0~1 200 Hz(中高频)范围内灵敏度的变化规律。此外,分别以封装光纤长度为10 mm和60 mm举例分析长度对上述二者的影响,各项仿真中灵敏度均会高达~1 000 pm/G,并引入品质因数的概念。所提理论研究对FBG加速度检波器的设计和综合性能的评价具有重要的指导意义,为器件参数优化提供理论依据。
  • 图  1  加速度检波器一般力学模型

    Fig.  1  The common mechanical model of acceleration detector

    图  2  谐振频率和灵敏度之间一般关系曲线

    Fig.  2  The general relationship curve between resonant frequency and sensitivity

    图  3  (a) η不同时谐振频率和灵敏度曲线;(b) η不同时随着质量的增加品质因数Q曲线

    Fig.  3  (a) The curve of fn and S with different η; (b) The curve of Q with different η as the M

    图  4  (a)不同质量下谐振频率和灵敏度曲线;(b)不同质量下品质因数Q曲线(η∈[0, 100]) (c)不同质量下谐振频率和灵敏度曲线;(d)不同质量下品质因数Q曲线(η∈[0, 1])

    Fig.  4  (a) The relationship between fn and S with different M; (b) The curve of Q with different M (η∈[0, 100]) (c) The relationship between fn and S with different M; (d) The curve of Q with different M (η∈[0, 1])

    图  5  (a) η值不同时系统谐振频率和灵敏度曲线;(b) η值不同时品质因数Q曲线

    Fig.  5  (a) relationship between fn and S with different η; (b) The curve of Q with different η

    表  1  检波器结构参数

    Table  1  The parameter of the acceleration detector

    参数/单位数值
    $ {E_f}/{P_a}$$ 7.2 \times {10^{10}}$
    $ {d_f}$/μm125
    $ {\lambda _B}$/nm1 550.151
    $ M$/gram$ M = 20, \; M = 30$
    $ L$/mm$ L = 10, \; L = 15$
    $ \eta $$ \eta \in \left[ {1,100} \right]$
    $ {P_e}$0.22
    下载: 导出CSV

    表  2  加速度检波器结构参数取值

    Table  2  The parameter variation of the acceleration detector

    参数/单位数值
    $M$/gram$M \in [0,100]$
    $L$/mm10
    $\eta $$\eta = 1, \; \eta = 10$
    下载: 导出CSV

    表  3  加速度检波器结构参数取值

    Table  3  The parameter variation of the acceleration detector

    参数/单位数值
    $M$/gram$M = 20, \; M = 100$
    $L$/mm10
    $\eta $$\eta \in \left[ {0,100} \right]$$\eta \in \left[ {0,1} \right]$
    下载: 导出CSV

    表  4  加速度检波器结构参数取值

    Table  4  The parameter variation of the acceleration detector

    参数/单位数值
    $M$/gram$M \in \left[ {0,100} \right]$
    $L$/mm$L = 10$$L = 60$
    $\eta $$\eta = 10$
    下载: 导出CSV
  • BERKOFF T A, KERSEY A D. Experimental demonstration of a fiber Bragg grating accelerometer[J]. IEEE Photonics Technology Letters,1996,8(12):1677-1679. doi: 10.1109/68.544716
    DA COSTA ANTUNES P F, LIMA H F T, ALBERTO N J, et al. Optical fiber accelerometer system for structural dynamic monitoring[J]. IEEE Sensors Journal,2009,9(11):1347-1354. doi: 10.1109/JSEN.2009.2026548
    ANTUNES R T P. Dynamic monitoring of mobile telecommunication towers exposed to natural loading with a FBG biaxial accelerometer[C]. The Sixteenth Optoelectronics and Communications Conference (OECC), USA: IEEE, 2011.
    ZHANG Yan, LI Sanguo, YIN Zhifan, et al. Fiber Bragg grating sensors for seismic wave detection[J]. SPIE International Society for Optics and Photonics,2005,5855:1008-1012.
    刘钦朋, 乔学光, 贾振安, 等. 温度不敏感的光纤布拉格高压传感技术研究[J]. 应用光学,2011,32(6):1282-1285.

    LIU Qinpeng, QIAO Xueguang, JIA Zhen'an, et al. Temperature-insensitive fiber Bragg grating high-pressure sensing technology[J]. Journal of Applied Optics,2011,32(6):1282-1285.
    刘强, 张晓雨, 刘懿莹, 等. 弯曲光纤布拉格光栅靶式流量传感器的研究[J]. 应用光学,2017,38(2):336-340. doi: 10.5768/JAO201738.0208002

    LIU Qiang, ZHANG Xiaoyu, LIU Yiying, et al. Study on bending fiber Bragg grating target flow sensor[J]. Journal of Applied Optics,2017,38(2):336-340. doi: 10.5768/JAO201738.0208002
    QIAO X G, SHAO Z H, BAO W J, et al. Fiber Bragg grating sensors for the oil industry[J]. Sensors,2017,17(3):429. doi: 10.3390/s17030429
    LAUDATI A, MENNELLA F, GIORDANO M, et al. A fiber-optic Bragg grating seismic sensor[J]. IEEE Photonics Technology Letters,2007,19(24):1991-1993. doi: 10.1109/LPT.2007.909628
    ZHANG X L, LIU X M, ZHANG F X, et al. Reliable high sensitivity FBG geophone for low frequency seismic acquisition[J]. Measurement,2018,129:62-67. doi: 10.1016/j.measurement.2018.07.009
    TALEBINEJAD I, FISCHER C, ANSARI F. Low frequency fiber optic accelerometer for civil structural health monitoring[C]. Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security, USA: International Society for Optics and Photonics, 2009.
    TODD M D, JOHNSON G A, ALTHOUSE B A, et al. Flexural beam-based fiber Bragg grating accelerometers[J]. IEEE Photonics Technology Letters,1998,10(11):1605-1607. doi: 10.1109/68.726764
    MITA A, YOKOI I. Fiber Bragg grating accelerometer for structural health monitoring[C]. The Fifth International Conference on Motion and vibration control, 2000.
    WENG Y Y, QIAO X G, GUO T, et al. A robust and compact fiber Bragg grating vibration sensor for seismic measurement[J]. IEEE Sensors Journal,2012,12(4):800-804. doi: 10.1109/JSEN.2011.2166258
    KHAN M M, PANWAR N, DHAWAN R. Modified cantilever beam shaped FBG based accelerometer with self temperature compensation[J]. Sensors and Actuators A: Physical,2014,205:79-85. doi: 10.1016/j.sna.2013.10.027
    FENG D Y, QIAO X G, YANG H Z, et al. A fiber Bragg grating accelerometer based on a hybridization of cantilever beam[J]. IEEE Sensors Journal,2015,15(3):1532-1537. doi: 10.1109/JSEN.2014.2364122
    BASUMALLICK N, BISWAS P, DASGUPTA K, et al. Design optimization of fiber Bragg grating accelerometer for maximum sensitivity[J]. Sensors and Actuators A: Physical,2013,194:31-39. doi: 10.1016/j.sna.2013.01.039
    ZHANG Xiaolei, RONG Qiangzhou, SUN Hao, et al. Low-frequency fiber Bragg grating accelerometer based on a double-semicircle cantilever[J]. Optical Fiber Technology,2014,20(3):190-193. doi: 10.1016/j.yofte.2014.01.006
    ZHANG Jinghua, QIAO Xueguang, HU Manli, et al. Flextensional fiber Bragg grating-based accelerometer for low frequency vibration measurement[J]. Chinese Optics Letters,2011,9(9):25-28.
    LIU Qinpeng, JIA Zhenan, FU Haiwei, et al. Double Cantilever Beams Accelerometer Using Short Fiber Bragg Grating for Eliminating Chirp[J]. IEEE Sensors Journal,2016,16(17):6611-6616. doi: 10.1109/JSEN.2016.2588485
    于洋, 孟洲, 罗洪. 对称推挽式光纤光栅振动传感器设计研究[J]. 半导体光电,2011,32(1):118-122.

    YU Yang, MENG Zhou, LUO Hong. Study on Fiber Bragg Grating Vibrating Sensors with Symmetry Push-pull Configuration[J]. Semiconductor Optoelectronics,2011,32(1):118-122.
    刘钦朋, 乔学光, 赵建林, 等. 基于弹性管的光纤布拉格光栅加速度传感研究[J]. 光电子. 激光,2012,23(7):1227-1232.

    LIU Qinpeng, QIAO Xueguang, ZHAO Jianlin, et al. Study on fiber Bragg grating acceleration sensing based on elastic tube[J]. Journal of Optoelectronics Laser,2012,23(7):1227-1232.
    WANG Jun, ZENG Yujie, LIN Chongyu, et al. A miniaturized FBG accelerometer based on a thin polyurethane shell[J]. IEEE Sensors Journal,2016,16(5):1210-1216. doi: 10.1109/JSEN.2015.2501983
    ZHANG Yunshan, QIAO Xueguang, LIU Qinpeng, et al. Study on a fiber Bragg grating accelerometer based on compliant cylinder[J]. Optical Fiber Technology,2015,26(2015):229-233.
    GUTIÉRREZ N, GALVÍN P, LASAGNI F. Low weight additive manufacturing FBG accelerometer: Design, characterization and testing[J]. Measurement,2018,117:295-303. doi: 10.1016/j.measurement.2017.12.030
    WANG X F, GUO Y X, XIONG L, et al. High-frequency optical fiber Bragg grating accelerometer[J]. IEEE Sensors Journal,2018,18(12):4954-4960. doi: 10.1109/JSEN.2018.2833885
    MULLER M S, BUCK T C, KOCH A W. Fiber Bragg grating-based acceleration sensor[C]//2009 International Symposium on Optomechatronic Technologies, September 21-23, 2009. Istanbul, Turkey. New York, USA: IEEE, 2009.
    LIU Q P, QIAO X G, ZHAO J L, et al. Novel fiber Bragg grating accelerometer based on diaphragm[J]. IEEE Sensors Journal,2012,12(10):3000-3004. doi: 10.1109/JSEN.2012.2201464
    LIU Q P, QIAO X G, JIA Z A, et al. Large frequency range and high sensitivity fiber Bragg grating accelerometer based on double diaphragms[J]. IEEE Sensors Journal,2014,14(5):1499-1504. doi: 10.1109/JSEN.2013.2296932
    QIU L, LIANG L, LI D X, et al. Theoretical and experimental study on FBG accelerometer based on multi-flexible hinge mechanism[J]. Optical Fiber Technology,2017,38:142-146. doi: 10.1016/j.yofte.2017.09.012
    LIU F F, DAI Y T, KARANJA J, et al. A low frequency FBG accelerometer with symmetrical bended spring plates[J]. Sensors,2017,17(12):206. doi: 10.3390/s17010206
    刘钦朋. 光纤布拉格光栅加速度传感技术[M]. 北京: 国防工业出版社, 2015.

    LIU Qinpeng. Fiber Bragg grating acceleration sensing technology[M]. Beijing: National Defence Industry Press, 2015.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  727
  • HTML全文浏览量:  416
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-28
  • 修回日期:  2019-04-14

目录

    /

    返回文章
    返回