Research on Theoretical Model of High Sensitivity Fiber Bragg Grating Accelerometer
-
摘要: 针对两点封装,建立光纤光栅加速度检波器通用模型,理论推导加速度检波器灵敏度和谐振频率的解析表达式,深入研究加速度灵敏度和谐振频率的影响因素,讨论封装光纤刚度系数与检波器结构刚度系数之比对检波器响应特性的影响,并分析刚度比分别在0~1、0~100范围随着等效质量的增大(0~100 g),加速度灵敏度和谐振频率的制约关系,及在0~500 Hz(中低频)和0~1 200 Hz(中高频)范围内灵敏度的变化规律。此外,分别以封装光纤长度为10 mm和60 mm举例分析长度对上述二者的影响,各项仿真中灵敏度均会高达~1 000 pm/G,并引入品质因数的概念。所提理论研究对FBG加速度检波器的设计和综合性能的评价具有重要的指导意义,为器件参数优化提供理论依据。Abstract: A general model of fiber Bragg grating (FBG) acceleration detector has been established for the two-point package model. The sensitivity and the resonance frequency's analytical expressions of the acceleration detector have been deduced theoretically, and the influence factors which affecting the sensitivity and resonance frequency have been researched deeply, the acceleration detector’s response characteristics have been discussed, which would be affected by the ratio, that the package fiber stiffness to the structure stiffness. Based on this basis, the restrictive relation between the sensitivity and the resonance frequency have been analyzed, among the equivalent mass and the ratio have been in the range of 0~100 g, 0~1 and 0~100, respectively. And the resonance frequency’s change rule within the scope of 0~500 Hz (low-medium frequency) and 0~1200 Hz (medium-high frequency) also has been studied. Furthermore, the package fibers have been chosen 10 mm and 60 mm as examples to analyze the influence to the above two mentioned, the sensitivity of each simulation would reach up to ~1 000 pm/G, and the quality factor has been introduced. This study has played a significant role in the design and comprehensive performance evaluation of the acceleration detector, and provided a theoretical reference for the optimization of structural parameters to it.
-
Key words:
- fiber Bragg grating /
- accelerometer /
- sensitivity /
- resonant frequency /
- figure of merit
-
图 4 (a)不同质量下谐振频率和灵敏度曲线;(b)不同质量下品质因数Q曲线(η∈[0, 100]) (c)不同质量下谐振频率和灵敏度曲线;(d)不同质量下品质因数Q曲线(η∈[0, 1])
Fig. 4 (a) The relationship between fn and S with different M; (b) The curve of Q with different M (η∈[0, 100]) (c) The relationship between fn and S with different M; (d) The curve of Q with different M (η∈[0, 1])
表 1 检波器结构参数
Table 1 The parameter of the acceleration detector
参数/单位 数值 $ {E_f}/{P_a}$ $ 7.2 \times {10^{10}}$ $ {d_f}$ /μm125 $ {\lambda _B}$ /nm1 550.151 $ M$ /gram$ M = 20, \; M = 30$ $ L$ /mm$ L = 10, \; L = 15$ $ \eta $ $ \eta \in \left[ {1,100} \right]$ $ {P_e}$ 0.22 表 2 加速度检波器结构参数取值
Table 2 The parameter variation of the acceleration detector
参数/单位 数值 $M$ /gram$M \in [0,100]$ $L$ /mm10 $\eta $ $\eta = 1, \; \eta = 10$ 表 3 加速度检波器结构参数取值
Table 3 The parameter variation of the acceleration detector
参数/单位 数值 $M$ /gram$M = 20, \; M = 100$ $L$ /mm10 $\eta $ $\eta \in \left[ {0,100} \right]$ 、$\eta \in \left[ {0,1} \right]$ 表 4 加速度检波器结构参数取值
Table 4 The parameter variation of the acceleration detector
参数/单位 数值 $M$ /gram$M \in \left[ {0,100} \right]$ $L$ /mm$L = 10$ 、$L = 60$ $\eta $ $\eta = 10$ -
BERKOFF T A, KERSEY A D. Experimental demonstration of a fiber Bragg grating accelerometer[J]. IEEE Photonics Technology Letters,1996,8(12):1677-1679. doi: 10.1109/68.544716 DA COSTA ANTUNES P F, LIMA H F T, ALBERTO N J, et al. Optical fiber accelerometer system for structural dynamic monitoring[J]. IEEE Sensors Journal,2009,9(11):1347-1354. doi: 10.1109/JSEN.2009.2026548 ANTUNES R T P. Dynamic monitoring of mobile telecommunication towers exposed to natural loading with a FBG biaxial accelerometer[C]. The Sixteenth Optoelectronics and Communications Conference (OECC), USA: IEEE, 2011. ZHANG Yan, LI Sanguo, YIN Zhifan, et al. Fiber Bragg grating sensors for seismic wave detection[J]. SPIE International Society for Optics and Photonics,2005,5855:1008-1012. 刘钦朋, 乔学光, 贾振安, 等. 温度不敏感的光纤布拉格高压传感技术研究[J]. 应用光学,2011,32(6):1282-1285.LIU Qinpeng, QIAO Xueguang, JIA Zhen'an, et al. Temperature-insensitive fiber Bragg grating high-pressure sensing technology[J]. Journal of Applied Optics,2011,32(6):1282-1285. 刘强, 张晓雨, 刘懿莹, 等. 弯曲光纤布拉格光栅靶式流量传感器的研究[J]. 应用光学,2017,38(2):336-340. doi: 10.5768/JAO201738.0208002LIU Qiang, ZHANG Xiaoyu, LIU Yiying, et al. Study on bending fiber Bragg grating target flow sensor[J]. Journal of Applied Optics,2017,38(2):336-340. doi: 10.5768/JAO201738.0208002 QIAO X G, SHAO Z H, BAO W J, et al. Fiber Bragg grating sensors for the oil industry[J]. Sensors,2017,17(3):429. doi: 10.3390/s17030429 LAUDATI A, MENNELLA F, GIORDANO M, et al. A fiber-optic Bragg grating seismic sensor[J]. IEEE Photonics Technology Letters,2007,19(24):1991-1993. doi: 10.1109/LPT.2007.909628 ZHANG X L, LIU X M, ZHANG F X, et al. Reliable high sensitivity FBG geophone for low frequency seismic acquisition[J]. Measurement,2018,129:62-67. doi: 10.1016/j.measurement.2018.07.009 TALEBINEJAD I, FISCHER C, ANSARI F. Low frequency fiber optic accelerometer for civil structural health monitoring[C]. Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security, USA: International Society for Optics and Photonics, 2009. TODD M D, JOHNSON G A, ALTHOUSE B A, et al. Flexural beam-based fiber Bragg grating accelerometers[J]. IEEE Photonics Technology Letters,1998,10(11):1605-1607. doi: 10.1109/68.726764 MITA A, YOKOI I. Fiber Bragg grating accelerometer for structural health monitoring[C]. The Fifth International Conference on Motion and vibration control, 2000. WENG Y Y, QIAO X G, GUO T, et al. A robust and compact fiber Bragg grating vibration sensor for seismic measurement[J]. IEEE Sensors Journal,2012,12(4):800-804. doi: 10.1109/JSEN.2011.2166258 KHAN M M, PANWAR N, DHAWAN R. Modified cantilever beam shaped FBG based accelerometer with self temperature compensation[J]. Sensors and Actuators A: Physical,2014,205:79-85. doi: 10.1016/j.sna.2013.10.027 FENG D Y, QIAO X G, YANG H Z, et al. A fiber Bragg grating accelerometer based on a hybridization of cantilever beam[J]. IEEE Sensors Journal,2015,15(3):1532-1537. doi: 10.1109/JSEN.2014.2364122 BASUMALLICK N, BISWAS P, DASGUPTA K, et al. Design optimization of fiber Bragg grating accelerometer for maximum sensitivity[J]. Sensors and Actuators A: Physical,2013,194:31-39. doi: 10.1016/j.sna.2013.01.039 ZHANG Xiaolei, RONG Qiangzhou, SUN Hao, et al. Low-frequency fiber Bragg grating accelerometer based on a double-semicircle cantilever[J]. Optical Fiber Technology,2014,20(3):190-193. doi: 10.1016/j.yofte.2014.01.006 ZHANG Jinghua, QIAO Xueguang, HU Manli, et al. Flextensional fiber Bragg grating-based accelerometer for low frequency vibration measurement[J]. Chinese Optics Letters,2011,9(9):25-28. LIU Qinpeng, JIA Zhenan, FU Haiwei, et al. Double Cantilever Beams Accelerometer Using Short Fiber Bragg Grating for Eliminating Chirp[J]. IEEE Sensors Journal,2016,16(17):6611-6616. doi: 10.1109/JSEN.2016.2588485 于洋, 孟洲, 罗洪. 对称推挽式光纤光栅振动传感器设计研究[J]. 半导体光电,2011,32(1):118-122.YU Yang, MENG Zhou, LUO Hong. Study on Fiber Bragg Grating Vibrating Sensors with Symmetry Push-pull Configuration[J]. Semiconductor Optoelectronics,2011,32(1):118-122. 刘钦朋, 乔学光, 赵建林, 等. 基于弹性管的光纤布拉格光栅加速度传感研究[J]. 光电子. 激光,2012,23(7):1227-1232.LIU Qinpeng, QIAO Xueguang, ZHAO Jianlin, et al. Study on fiber Bragg grating acceleration sensing based on elastic tube[J]. Journal of Optoelectronics Laser,2012,23(7):1227-1232. WANG Jun, ZENG Yujie, LIN Chongyu, et al. A miniaturized FBG accelerometer based on a thin polyurethane shell[J]. IEEE Sensors Journal,2016,16(5):1210-1216. doi: 10.1109/JSEN.2015.2501983 ZHANG Yunshan, QIAO Xueguang, LIU Qinpeng, et al. Study on a fiber Bragg grating accelerometer based on compliant cylinder[J]. Optical Fiber Technology,2015,26(2015):229-233. GUTIÉRREZ N, GALVÍN P, LASAGNI F. Low weight additive manufacturing FBG accelerometer: Design, characterization and testing[J]. Measurement,2018,117:295-303. doi: 10.1016/j.measurement.2017.12.030 WANG X F, GUO Y X, XIONG L, et al. High-frequency optical fiber Bragg grating accelerometer[J]. IEEE Sensors Journal,2018,18(12):4954-4960. doi: 10.1109/JSEN.2018.2833885 MULLER M S, BUCK T C, KOCH A W. Fiber Bragg grating-based acceleration sensor[C]//2009 International Symposium on Optomechatronic Technologies, September 21-23, 2009. Istanbul, Turkey. New York, USA: IEEE, 2009. LIU Q P, QIAO X G, ZHAO J L, et al. Novel fiber Bragg grating accelerometer based on diaphragm[J]. IEEE Sensors Journal,2012,12(10):3000-3004. doi: 10.1109/JSEN.2012.2201464 LIU Q P, QIAO X G, JIA Z A, et al. Large frequency range and high sensitivity fiber Bragg grating accelerometer based on double diaphragms[J]. IEEE Sensors Journal,2014,14(5):1499-1504. doi: 10.1109/JSEN.2013.2296932 QIU L, LIANG L, LI D X, et al. Theoretical and experimental study on FBG accelerometer based on multi-flexible hinge mechanism[J]. Optical Fiber Technology,2017,38:142-146. doi: 10.1016/j.yofte.2017.09.012 LIU F F, DAI Y T, KARANJA J, et al. A low frequency FBG accelerometer with symmetrical bended spring plates[J]. Sensors,2017,17(12):206. doi: 10.3390/s17010206 刘钦朋. 光纤布拉格光栅加速度传感技术[M]. 北京: 国防工业出版社, 2015.LIU Qinpeng. Fiber Bragg grating acceleration sensing technology[M]. Beijing: National Defence Industry Press, 2015. -