Extreme luminance measurement method based on high dynamic range imaging
-
摘要: 为了解决光污染中存在的极端亮度对比问题,针对此类复杂照明光环境,提出了一种基于高动态范围成像技术的极端亮度测量方法。利用24色标准色卡和CS-2000分光辐射亮度计对D5300数码相机进行标定,获得了高动态范围亮度分布图像与CIE 1931-XYZ表色系统刺激值之间的拟合关系,实现了极端亮度对比环境中亮度分布的准确测量。通过在城市道路中实地测量,验证了基于高动态范围成像技术的极端亮度测量方法的亮度测量动态范围可达104,其测量值与CS-2000分光辐射亮度计测得的标准亮度值的相对误差分别为−2.2 %和−2.5 %,表明该方法具有良好的适用性,可为道路照明质量的高效、高准确度测量提供计量保障,为有效防治光污染等复杂光环境问题提供了解决方案。
-
关键词:
- 亮度 /
- 高动态范围成像 /
- CIE 1931-XYZ表色系统 /
- 计量
Abstract: In order to solve the problem of extreme luminance contrast in light pollution, an extreme luminance measurement method based on high dynamic range imaging technology was proposed for complex lighting environment. The 24 color standard color card and CS-2000 spectrophotometer were used to calibrate D5300 digital camera, the fitting relationship between the luminance distribution image with high dynamic range and the stimulus value of CIE 1931-XYZ surface color system was obtained, and the accurate measurement of luminance distribution in extreme luminance contrast environment was realized. Through the field measurement in urban roads, it was verified that the dynamic range of luminance measurement of extreme luminance measurement method based on high dynamic range imaging technology could reach 104, and the relative errors between measured value and standard luminance value measured by CS-2000 spectrophotometer were −2.2% and −2.5% respectively. It shows that this method has good applicability, which can provide metrology support for efficient and high-accuracy measurement of road lighting quality, and also provide the solution for effective prevention and control of complex light environment problems such as light pollution.-
Key words:
- luminance /
- high dynamic range imaging /
- CIE1931-XYZ surface color system /
- metrology
-
表 1 相机和镜头的主要性能指标
Table 1 Main performance parameters of camera and lens
尼康D5300+腾龙18-200VC镜头 相机性能 外形尺寸 125 mm×98 mm×76 mm 产品质量 480 g 传感器类型 CMOS 传感器尺寸 23.5 mm×15.6 mm 有效像素 2 416万 最大像素 2 478万 曝光模式 自动、手动 白平衡模式 自动、预设 快门速度 1/4 000 s~30 s,可以1/3 eV或1/2 eV为步长调校 曝光补偿 可以1/3 eV或1/2 eV为步长在-5 eV~5 eV之间调校 ISO感光度 ISO 100~12 800,可以1/3 eV为步长调校 电池类型 锂电池(EN-EL14a) 续航能力 600张(CIPA标准) 镜头性能 镜头长度 96.7 mm~102 mm 镜头质量 460 g 镜头直径 68 mm 最大放大倍率 1/3.7倍 焦距范围 18 mm~200 mm 等效焦距 27 mm~300 mm 光圈范围 F3.5~F22 防抖性能 光学防抖 表 2 选取色块的亮度和色度信息
Table 2 Luminance and chroma information of selected color blocks
cd/m2 色块1 色块2 色块3 色块4 色块5 色块6 色块7 色块8 色块9 色块10 色块11 色块12 亮度 13.67 4.67 10.28 7.92 5.29 12.38 7.83 19.48 7.43 24.06 7.29 2.66 X 13.70 3.83 7.69 8.94 7.08 9.75 4.75 16.88 6.04 23.01 6.95 2.53 Y 13.67 4.67 10.28 7.92 5.29 12.38 7.83 19.48 7.43 24.06 7.29 2.66 Z 10.20 2.25 8.07 2.38 4.27 3.13 2.56 2.57 19.93 25.56 7.60 2.74 表 3 选取色块的灰度值Rgv、Ggv、Bgv
Table 3 (Rgv, Ggv, Bgv) gray value of selected color blocks
Rgv Ggv Bgv 色块1 0.00177 0.00152 0.00118 色块2 0.00021 0.00021 0.00009 色块3 0.00074 0.00114 0.00078 色块4 0.00155 0.00098 0.00038 色块5 0.00153 0.00064 0.00069 色块6 0.00115 0.00118 0.00027 色块7 0.00036 0.00074 0.00019 色块8 0.00309 0.00298 0.00002 色块9 0.00049 0.00306 0.00306 色块10 0.00306 0.00306 0.00306 色块11 0.00054 0.00052 0.00050 色块12 0.00008 0.00007 0.00007 表 4 X、Y、Z转换为R、G、B的结果
Table 4 Results of X, Y, Z converting to R, G, B
X Y Z R G B 色块1 13.70 13.67 10.20 16.24 11.96 10.18 色块2 3.83 4.67 2.25 4.01 4.59 2.22 色块3 7.69 10.28 8.07 5.87 10.32 8.04 色块4 8.94 7.92 2.38 13.11 6.59 2.34 色块5 7.08 5.29 4.27 10.37 3.69 4.28 色块6 9.75 12.38 3.13 10.75 12.50 3.04 色块7 4.75 7.83 2.56 3.23 8.61 2.50 色块8 16.88 19.48 2.57 21.45 18.99 2.41 色块9 6.04 7.43 19.93 -0.01 6.53 20.07 色块10 23.01 24.06 25.56 23.06 21.25 25.60 色块11 6.95 7.29 7.60 6.98 6.46 7.61 色块12 2.53 2.66 2.74 2.55 2.37 2.74 表 5 道路环境中高动态范围亮度测试地点结果
Table 5 High dynamic range luminance test location results in road environment
测量地点 测量设备 亮度值/(cd/m2) 相对误差/% 神舟三路与航
天中路交叉路口D5300 CS-2000 10189 10423 −2.2 神州大道辅路 D5300 CS-2000 5.13 5.26 −2.5 -
[1] 何舒文, 王延杰, 孙宏海, 等. 基于DMD的高动态范围场景成像技术[J]. 光子学报,2015,44(8):99-105.HE Shuwen, WANG Yanjie, SUN Honghai, et al. High dynamic range imaging based on DMD[J]. Acta Photonica Sinica,2015,44(8):99-105. [2] YE N J, HUO Y Q, LIU S C, et al. Single exposure high dynamic range image reconstruction based on deep dual-branch network[J]. IEEE Access,2021,9:9610-9624. doi: 10.1109/ACCESS.2021.3049480 [3] PAN Z Y, YU M, JIANG G Y, et al. Multi-exposure high dynamic range imaging with informative content enhanced network[J]. Neurocomputing,2020,386:147-164. doi: 10.1016/j.neucom.2019.12.093 [4] MOECK M, ANAOKAR S. Illuminance analysis from high dynamic range image[J]. Journal of the Illuminating Engineering Institute of North America,2013,2(3):211-228. [5] 赵鹏, 余新, 杨亚涛. 基于光转向的高动态范围激光显示[J]. 激光与光电子学进展,2022,59(5):173-180.ZHAO Peng, YU Xin, YANG Yatao. High dynamic range laser display based on light steering[J]. Laser and Optoelectronics Progress,2022,59(5):173-180. [6] MUKHERJEE R, BESSA M, MELO-PINTO P, et al. Object detection under challenging lighting conditions using high dynamic range imagery[J]. IEEE Access,2021,9:77771-77783. doi: 10.1109/ACCESS.2021.3082293 [7] TYUKHOVA Y, WATERS C. An assessment of high dynamic range luminance measurements with LED lighting[J]. LEUKOS,2014,10(2):87-99. doi: 10.1080/15502724.2014.861279 [8] 汪锦航, 卢荣胜, 刘端茂. 高动态范围表面自适应条纹投影测量方法[J]. 光学学报,2021,41(19):145-154.WANG Jinhang, LU Rongsheng, LIU Duanmao. Adaptive fringe projection measurement method for high dynamic range surface[J]. Acta Optica Sinica,2021,41(19):145-154. [9] 白本督, 刘卫华. 高动态范围图像成像技术[J]. 西安邮电大学学报,2020,25(1):63-67. doi: 10.13682/j.issn.2095-6533.2020.01.008BAI Bendu, LIU Weihua. High dynamic range image processing[J]. Journal of Xi'an University of Posts and Telecommunications,2020,25(1):63-67. doi: 10.13682/j.issn.2095-6533.2020.01.008 [10] 周林颖, 邢冠宇. 一种基于高动态范围(HDR)人脸图片的室外光照估计算法[J]. 现代计算机,2020(3):63-68. doi: 10.3969/j.issn.1007-1423.2020.03.012ZHOU Linying, XING Guanyu. An algorithm for recovering outdoor illumination information from high dynamic range (HDR) face images[J]. Modern Computer,2020(3):63-68. doi: 10.3969/j.issn.1007-1423.2020.03.012 [11] 曾海瑞, 孙华燕, 都琳, 等. 面向空间目标观测的高动态范围图像合成[J]. 激光与光电子学进展,2019,56(4):96-103.ZENG Hairui, SUN Huayan, DU Lin, et al. High dynamic range image synthesis for space target observation[J]. Laser and Optoelectronics Progress,2019,56(4):96-103. [12] 冯维, 张福民, 王惟婧, 等. 基于数字微镜器件的自适应高动态范围成像方法及应用[J]. 物理学报,2017,66(23):127-135. doi: 10.7498/aps.66.234201FENG Wei, ZHANG Fumin, WANG Weijing, et al. Adaptive high-dynamic-range imaging method and its application based on digital micromirror device[J]. Acta Physica Sinica,2017,66(23):127-135. doi: 10.7498/aps.66.234201 [13] 黄敏, 何瑞丽, 史春洁, 等. 比较法测试不同颜色匹配函数的性能[J]. 光谱学与光谱分析,2018,38(7):2241-2249.HUANG Min, HE Ruili, SHI Chunjie, et al. Test the performances of different color matching functions with the method of comparison[J]. Spectroscopy and Spectral Analysis,2018,38(7):2241-2249. [14] 刘民航. 单脉冲飞秒激光对金属薄膜的微纳加工与颜色显示[D]. 深圳: 深圳大学, 2019.LIU Minhang. Nanofabrication and coloration of metal film via single-pulse femtosecond laser writing[D]. Shenzhen: Shenzhen University, 2019. [15] 杨超普, 方文卿, 阳帆, 等. 基于光谱分析的明视觉照度传感器设计研究[J]. 激光与光电子学进展,2020,57(9):55-61.YANG Chaopu, FANG Wenqing, YANG Fan, et al. Design and investigation on illumination sensors of photopic vision based on spectral analysis[J]. Laser and Optoelectronics Progress,2020,57(9):55-61. [16] NAVARRETE-DE G E, GAGO-CALDERON A, GARCIA-CEBALLOS L, et al. Adjustment of lighting parameters from photopic to mesopic values in outdoor lighting installations strategy and associated evaluation of variation in energy needs[J]. Sustainability,2021,13(8):4089. doi: 10.3390/su13084089 [17] ZANG X L, HUANG L Y, ZHU X N, et al. Influences of luminance contrast and ambient lighting on visual context learning and retrieval[J]. Attention, Perception and Psychophysics,2020,82(8):4007-4024. doi: 10.3758/s13414-020-02106-y [18] LI M, WU P Y, DING J H, et al. The circadian effect versus mesopic vision effect in road lighting applications[J]. Applied Sciences,2020,10(19):6975. doi: 10.3390/app10196975 -