留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高动态范围成像的极端亮度测量方法研究

秦艳 刘瑞星 康臻 李宏光 宫经珠 孙宇楠 赵俊成

秦艳, 刘瑞星, 康臻, 李宏光, 宫经珠, 孙宇楠, 赵俊成. 基于高动态范围成像的极端亮度测量方法研究[J]. 应用光学, 2023, 44(1): 168-174. doi: 10.5768/JAO202344.0103008
引用本文: 秦艳, 刘瑞星, 康臻, 李宏光, 宫经珠, 孙宇楠, 赵俊成. 基于高动态范围成像的极端亮度测量方法研究[J]. 应用光学, 2023, 44(1): 168-174. doi: 10.5768/JAO202344.0103008
QIN Yan, LIU Ruixing, KANG Zhen, LI Hongguang, GONG Jingzhu, SUN Yu'nan, ZHAO Juncheng. Extreme luminance measurement method based on high dynamic range imaging[J]. Journal of Applied Optics, 2023, 44(1): 168-174. doi: 10.5768/JAO202344.0103008
Citation: QIN Yan, LIU Ruixing, KANG Zhen, LI Hongguang, GONG Jingzhu, SUN Yu'nan, ZHAO Juncheng. Extreme luminance measurement method based on high dynamic range imaging[J]. Journal of Applied Optics, 2023, 44(1): 168-174. doi: 10.5768/JAO202344.0103008

基于高动态范围成像的极端亮度测量方法研究

doi: 10.5768/JAO202344.0103008
基金项目: 装备发展部测试仪器领域项目
详细信息
    作者简介:

    秦艳(1975—),女,硕士,高级工程师,主要从事光辐射计量测试技术方面的研究。E-mail:335183173@qq.com

  • 中图分类号: TN206

Extreme luminance measurement method based on high dynamic range imaging

  • 摘要: 为了解决光污染中存在的极端亮度对比问题,针对此类复杂照明光环境,提出了一种基于高动态范围成像技术的极端亮度测量方法。利用24色标准色卡和CS-2000分光辐射亮度计对D5300数码相机进行标定,获得了高动态范围亮度分布图像与CIE 1931-XYZ表色系统刺激值之间的拟合关系,实现了极端亮度对比环境中亮度分布的准确测量。通过在城市道路中实地测量,验证了基于高动态范围成像技术的极端亮度测量方法的亮度测量动态范围可达104,其测量值与CS-2000分光辐射亮度计测得的标准亮度值的相对误差分别为−2.2 %和−2.5 %,表明该方法具有良好的适用性,可为道路照明质量的高效、高准确度测量提供计量保障,为有效防治光污染等复杂光环境问题提供了解决方案。
  • 图  1  亮度标定实验

    Fig.  1  Luminance calibration experiment

    图  2  相机拍摄的低动态范围图像

    Fig.  2  Low dynamic range images by camera

    图  3  参数标定选取的色块

    Fig.  3  Color blocks selected for parameter calibration

    图  4  RGB三刺激值与RgvGgvBgv灰度值拟合图

    Fig.  4  Fitting diagram of R, G, B tristimulus values and Rgv, Ggv, Bgv gray values

    图  5  高动态范围图像测量系统的测量流程

    Fig.  5  Measurement process of high dynamic range image measurement system

    表  1  相机和镜头的主要性能指标

    Table  1  Main performance parameters of camera and lens

    尼康D5300+腾龙18-200VC镜头
    相机性能外形尺寸125 mm×98 mm×76 mm产品质量480 g
    传感器类型CMOS传感器尺寸23.5 mm×15.6 mm
    有效像素2 416万最大像素2 478万
    曝光模式自动、手动白平衡模式自动、预设
    快门速度1/4 000 s~30 s,可以1/3 eV或1/2 eV为步长调校
    曝光补偿可以1/3 eV或1/2 eV为步长在-5 eV~5 eV之间调校
    ISO感光度ISO 100~12 800,可以1/3 eV为步长调校
    电池类型锂电池(EN-EL14a)续航能力600张(CIPA标准)
    镜头性能镜头长度96.7 mm~102 mm镜头质量460 g
    镜头直径68 mm最大放大倍率1/3.7倍
    焦距范围18 mm~200 mm等效焦距27 mm~300 mm
    光圈范围F3.5~F22防抖性能光学防抖
    下载: 导出CSV

    表  2  选取色块的亮度和色度信息

    Table  2  Luminance and chroma information of selected color blocks cd/m2

    色块1色块2色块3色块4色块5色块6色块7色块8色块9色块10色块11色块12
    亮度13.674.6710.287.925.2912.387.8319.487.4324.067.292.66
    X13.703.837.698.947.089.754.7516.886.0423.016.952.53
    Y13.674.6710.287.925.2912.387.8319.487.4324.067.292.66
    Z10.202.258.072.384.273.132.562.5719.9325.567.602.74
    下载: 导出CSV

    表  3  选取色块的灰度值RgvGgvBgv

    Table  3  (Rgv, Ggv, Bgv) gray value of selected color blocks

    RgvGgvBgv
    色块10.001770.001520.00118
    色块20.000210.000210.00009
    色块30.000740.001140.00078
    色块40.001550.000980.00038
    色块50.001530.000640.00069
    色块60.001150.001180.00027
    色块70.000360.000740.00019
    色块80.003090.002980.00002
    色块90.000490.003060.00306
    色块100.003060.003060.00306
    色块110.000540.000520.00050
    色块120.000080.000070.00007
    下载: 导出CSV

    表  4  XYZ转换为RGB的结果

    Table  4  Results of X, Y, Z converting to R, G, B

    XYZRGB
    色块113.7013.6710.2016.2411.9610.18
    色块23.834.672.254.014.592.22
    色块37.6910.288.075.8710.328.04
    色块48.947.922.3813.116.592.34
    色块57.085.294.2710.373.694.28
    色块69.7512.383.1310.7512.503.04
    色块74.757.832.563.238.612.50
    色块816.8819.482.5721.4518.992.41
    色块96.047.4319.93-0.016.5320.07
    色块1023.0124.0625.5623.0621.2525.60
    色块116.957.297.606.986.467.61
    色块122.532.662.742.552.372.74
    下载: 导出CSV

    表  5  道路环境中高动态范围亮度测试地点结果

    Table  5  High dynamic range luminance test location results in road environment

    测量地点测量设备亮度值/(cd/m2相对误差/%
    神舟三路与航
    天中路交叉路口
    D5300CS-20001018910423−2.2
    神州大道辅路D5300CS-20005.135.26−2.5
    下载: 导出CSV
  • [1] 何舒文, 王延杰, 孙宏海, 等. 基于DMD的高动态范围场景成像技术[J]. 光子学报,2015,44(8):99-105.

    HE Shuwen, WANG Yanjie, SUN Honghai, et al. High dynamic range imaging based on DMD[J]. Acta Photonica Sinica,2015,44(8):99-105.
    [2] YE N J, HUO Y Q, LIU S C, et al. Single exposure high dynamic range image reconstruction based on deep dual-branch network[J]. IEEE Access,2021,9:9610-9624. doi: 10.1109/ACCESS.2021.3049480
    [3] PAN Z Y, YU M, JIANG G Y, et al. Multi-exposure high dynamic range imaging with informative content enhanced network[J]. Neurocomputing,2020,386:147-164. doi: 10.1016/j.neucom.2019.12.093
    [4] MOECK M, ANAOKAR S. Illuminance analysis from high dynamic range image[J]. Journal of the Illuminating Engineering Institute of North America,2013,2(3):211-228.
    [5] 赵鹏, 余新, 杨亚涛. 基于光转向的高动态范围激光显示[J]. 激光与光电子学进展,2022,59(5):173-180.

    ZHAO Peng, YU Xin, YANG Yatao. High dynamic range laser display based on light steering[J]. Laser and Optoelectronics Progress,2022,59(5):173-180.
    [6] MUKHERJEE R, BESSA M, MELO-PINTO P, et al. Object detection under challenging lighting conditions using high dynamic range imagery[J]. IEEE Access,2021,9:77771-77783. doi: 10.1109/ACCESS.2021.3082293
    [7] TYUKHOVA Y, WATERS C. An assessment of high dynamic range luminance measurements with LED lighting[J]. LEUKOS,2014,10(2):87-99. doi: 10.1080/15502724.2014.861279
    [8] 汪锦航, 卢荣胜, 刘端茂. 高动态范围表面自适应条纹投影测量方法[J]. 光学学报,2021,41(19):145-154.

    WANG Jinhang, LU Rongsheng, LIU Duanmao. Adaptive fringe projection measurement method for high dynamic range surface[J]. Acta Optica Sinica,2021,41(19):145-154.
    [9] 白本督, 刘卫华. 高动态范围图像成像技术[J]. 西安邮电大学学报,2020,25(1):63-67. doi: 10.13682/j.issn.2095-6533.2020.01.008

    BAI Bendu, LIU Weihua. High dynamic range image processing[J]. Journal of Xi'an University of Posts and Telecommunications,2020,25(1):63-67. doi: 10.13682/j.issn.2095-6533.2020.01.008
    [10] 周林颖, 邢冠宇. 一种基于高动态范围(HDR)人脸图片的室外光照估计算法[J]. 现代计算机,2020(3):63-68. doi: 10.3969/j.issn.1007-1423.2020.03.012

    ZHOU Linying, XING Guanyu. An algorithm for recovering outdoor illumination information from high dynamic range (HDR) face images[J]. Modern Computer,2020(3):63-68. doi: 10.3969/j.issn.1007-1423.2020.03.012
    [11] 曾海瑞, 孙华燕, 都琳, 等. 面向空间目标观测的高动态范围图像合成[J]. 激光与光电子学进展,2019,56(4):96-103.

    ZENG Hairui, SUN Huayan, DU Lin, et al. High dynamic range image synthesis for space target observation[J]. Laser and Optoelectronics Progress,2019,56(4):96-103.
    [12] 冯维, 张福民, 王惟婧, 等. 基于数字微镜器件的自适应高动态范围成像方法及应用[J]. 物理学报,2017,66(23):127-135. doi: 10.7498/aps.66.234201

    FENG Wei, ZHANG Fumin, WANG Weijing, et al. Adaptive high-dynamic-range imaging method and its application based on digital micromirror device[J]. Acta Physica Sinica,2017,66(23):127-135. doi: 10.7498/aps.66.234201
    [13] 黄敏, 何瑞丽, 史春洁, 等. 比较法测试不同颜色匹配函数的性能[J]. 光谱学与光谱分析,2018,38(7):2241-2249.

    HUANG Min, HE Ruili, SHI Chunjie, et al. Test the performances of different color matching functions with the method of comparison[J]. Spectroscopy and Spectral Analysis,2018,38(7):2241-2249.
    [14] 刘民航. 单脉冲飞秒激光对金属薄膜的微纳加工与颜色显示[D]. 深圳: 深圳大学, 2019.

    LIU Minhang. Nanofabrication and coloration of metal film via single-pulse femtosecond laser writing[D]. Shenzhen: Shenzhen University, 2019.
    [15] 杨超普, 方文卿, 阳帆, 等. 基于光谱分析的明视觉照度传感器设计研究[J]. 激光与光电子学进展,2020,57(9):55-61.

    YANG Chaopu, FANG Wenqing, YANG Fan, et al. Design and investigation on illumination sensors of photopic vision based on spectral analysis[J]. Laser and Optoelectronics Progress,2020,57(9):55-61.
    [16] NAVARRETE-DE G E, GAGO-CALDERON A, GARCIA-CEBALLOS L, et al. Adjustment of lighting parameters from photopic to mesopic values in outdoor lighting installations strategy and associated evaluation of variation in energy needs[J]. Sustainability,2021,13(8):4089. doi: 10.3390/su13084089
    [17] ZANG X L, HUANG L Y, ZHU X N, et al. Influences of luminance contrast and ambient lighting on visual context learning and retrieval[J]. Attention, Perception and Psychophysics,2020,82(8):4007-4024. doi: 10.3758/s13414-020-02106-y
    [18] LI M, WU P Y, DING J H, et al. The circadian effect versus mesopic vision effect in road lighting applications[J]. Applied Sciences,2020,10(19):6975. doi: 10.3390/app10196975
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  23
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-25
  • 修回日期:  2022-09-19
  • 网络出版日期:  2022-11-12
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回