留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多峰高斯拟合的分布式拉曼测温系统设计与应用

张均 杜超 于昌智 张丽 邓霄

张均, 杜超, 于昌智, 张丽, 邓霄. 基于多峰高斯拟合的分布式拉曼测温系统设计与应用[J]. 应用光学, 2023, 44(1): 128-136. doi: 10.5768/JAO202344.0103003
引用本文: 张均, 杜超, 于昌智, 张丽, 邓霄. 基于多峰高斯拟合的分布式拉曼测温系统设计与应用[J]. 应用光学, 2023, 44(1): 128-136. doi: 10.5768/JAO202344.0103003
ZHANG Jun, DU Chao, YU Changzhi, ZHANG Li, DENG Xiao. Design and application of distributed Raman thermometry system based on multi-modal Gaussian fitting[J]. Journal of Applied Optics, 2023, 44(1): 128-136. doi: 10.5768/JAO202344.0103003
Citation: ZHANG Jun, DU Chao, YU Changzhi, ZHANG Li, DENG Xiao. Design and application of distributed Raman thermometry system based on multi-modal Gaussian fitting[J]. Journal of Applied Optics, 2023, 44(1): 128-136. doi: 10.5768/JAO202344.0103003

基于多峰高斯拟合的分布式拉曼测温系统设计与应用

doi: 10.5768/JAO202344.0103003
基金项目: 国家自然科学基金(52009088);山西省重点研发计划资助项目(201903D321001);山西省应用基础研究计划(201901D211073)
详细信息
    作者简介:

    张均(1996—),女,硕士研究生,主要从事分布式光纤传感技术方面的研究。E-mail:1782941520@qq.com

    通讯作者:

    邓霄(1980—),男,博士,教授,主要从事冰情检测与光电智能仪器方面的研究。E-mail:dengxiao@tyut.edu.cn

  • 中图分类号: TN206

Design and application of distributed Raman thermometry system based on multi-modal Gaussian fitting

  • 摘要: 针对温感区域长度小于空间分辨率导致温度测量不准确的问题,提出一种多点温度校正方案,并介绍了一种可应用于中小尺度剖面温度分布测量的装置和方法。采用基于多峰高斯拟合的方案,实现了多个测量不准确温度点的同时校正,提高了系统的温度准确度,设计了分布式拉曼测温系统样机,通过将光纤部分缠绕在PPR管上实现了中小尺度剖面温度分布测量。实验装置使2 m和1.5 m温感区域的测量准确度提高到1 ℃;测得冬季黄河万家寨水库冰盖厚度约为42.33 cm,与人工测量结果相差约为1.67 cm;测得36 m深河水剖面的温度约在0.32 ℃~0.90 ℃范围内波动。实验结果表明,采用该分布式拉曼测温系统能够在野外大范围监测河道流水剖面的温度分布。
  • 图  1  分布式拉曼测温系统总体设计

    Fig.  1  Overall design of distributed Raman thermometry system

    图  2  标准温度与光纤测量温度之间的线性关系

    Fig.  2  Linear relationship between standard temperature and fiber-measured temperature

    图  3  高斯拟合处理前后的温度分布

    Fig.  3  Temperature distribution before and after Gaussian fitting

    图  4  校正前后的温度分布

    Fig.  4  Temperature distribution before and after correction

    图  5  冰盖剖面温度传感器

    Fig.  5  Temperature sensor of ice sheet profile

    图  6  传感器的布设与数据采集

    Fig.  6  Sensor layout and data collection

    图  7  正在冻结和冻结完成的温度数据

    Fig.  7  Freezing and frozen temperature data

    图  8  冰盖垂直方向上的温度分布

    Fig.  8  Temperature distribution in vertical direction of ice sheet

    图  9  人工测量的新冰盖厚度

    Fig.  9  New ice sheet thickness by manual measurement

    图  10  河水垂直方向上的温度分布

    Fig.  10  Temperature distribution in vertical direction of river water

  • [1] 付辉, 杨开林, 王涛, 等. 河冰水力学研究进展[J]. 南水北调与水利科技,2010,8(1):14-18.

    FU Hui, YANG Kailin, WANG Tao, et al. Progress in the study of river ice hydraulics[J]. South-to-North Water Transfers and Water Science & Technology,2010,8(1):14-18.
    [2] 滕晖, 邓云, 黄奉斌, 等. 水库静水结冰过程及冰盖热力变化的模拟试验研究[J]. 水科学进展,2011,22(5):720-726.

    TENG Hui, DENG Yun, HUANG Fengbin, et al. Experimental study on the simulation of freezing processes in calm waters and thermal changes on reservoir ice cover[J]. Advances in Water Science,2011,22(5):720-726.
    [3] 闫慧荣, 刘文涛, 冯民权, 等. 水库冰冻期冰内温度的模拟[J]. 武汉理工大学学报(信息与管理工程版),2010,32(5):738-741.

    YAN Huirong, LIU Wentao, FENG Minquan, et al. Distribution of ice temperature in freeze reservoir[J]. Journal of Wuhan University of Technology (Information & Management Engineering),2010,32(5):738-741.
    [4] CUI L Q, QIN J M, DENG X. Freshwater ice thickness apparatus based on differences in electrical resistance and temperature[J]. Cold Regions Science and Technology,2015,119:37-46. doi: 10.1016/j.coldregions.2015.07.009
    [5] SOTO M A, NANNIPIERI T, SIGNORINI A, et al. Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding[J]. Optics Letters,2011,36(13):2557-2559. doi: 10.1364/OL.36.002557
    [6] SELKER J S, THÉVENAZ L, HUWALD H, et al. Distributed fiber-optic temperature sensing for hydrologic systems[J]. Water Resources Research,2006,42(12):235-241.
    [7] ZHANG L, FENG X, ZHANG W, et al. Improving spatial resolution in fiber Raman distributed temperature sensor by using deconvolution algorithm[J]. Chinese Optics Letters,2009,7(7):560-563. doi: 10.3788/COL20090707.0560
    [8] BAZZO J P, PIPA D R, MARTELLI C, et al. Improving spatial resolution of Raman DTS using total variation deconvolution[J]. IEEE Sensors Journal,2016,16(11):4425-4430. doi: 10.1109/JSEN.2016.2539279
    [9] 石希, 夏军强, 孙健. 基于热红外遥感影像的河流水温反演方法比较——以长江上游流域为例[J]. 湖泊科学,2022,34(1):307-319. doi: 10.18307/2022.0125

    SHI Xi, XIA Junqiang, SUN Jian. Comparison of methods to derive river water temperature using thermal infrared imagery: a case study of the Upper Yangtze River catchment[J]. Journal of Lake Sciences,2022,34(1):307-319. doi: 10.18307/2022.0125
    [10] TYLER S W, HOLLAND D M, ZAGORODNOV V, et al. Using distributed temperature sensors to monitor an Antarctic ice shelf and sub-ice-shelf cavity[J]. Journal of Glaciology,2013,59(215):583-591. doi: 10.3189/2013JoG12J207
    [11] KOBS S, HOLLAND D M, ZAGORODNOV V, et al. Novel monitoring of Antarctic ice shelf basal melting using a fiber-optic distributed temperature sensing mooring[J]. Geophysical Research Letters,2014,41(19):6779-6786. doi: 10.1002/2014GL061155
    [12] 王玎睿, 邓霄, 张均, 等. 面向冰盖剖面的高空间分辨率分布式光纤测温系统设计[J]. 应用光学,2021,42(5):941-948. doi: 10.5768/JAO202142.0508003

    WANG Dingrui, DENG Xiao, ZHANG Jun, et al. High spatial resolution distributed optical fiber temperature measurement system for ice cover profile[J]. Journal of Applied Optics,2021,42(5):941-948. doi: 10.5768/JAO202142.0508003
    [13] 王伟杰. 基于拉曼散射的分布式光纤测温系统设计及优化[D]. 济南: 山东大学, 2013.

    WANG Weijie. Design and optimization of distributed fiber temperature sensor based on Raman scattering[D]. Jinan: Shandong University, 2013.
    [14] SAXENA M K, RAJU S D V S J, ARYA R, et al. Empirical mode decomposition-based detection of bend-induced error and its correction in a Raman optical fiber distributed temperature sensor[J]. IEEE Sensors Journal,2016,16(5):1243-1252. doi: 10.1109/JSEN.2015.2499242
    [15] 方一竹, 余果, 李海涛, 等. 基于多峰高斯模型的天然气产量趋势预测[J]. 天然气勘探与开发,2018,41(3):65-69.

    FANG Yizhu, YU Guo, LI Haitao, et al. Prediction of natural-gas production trend based on multi-peak Gauss model[J]. Natural Gas Exploration and Development,2018,41(3):65-69.
    [16] 宁枫, 朱永, 崔海军, 等. 一种提高分布式光纤测温系统空间分辨率的线性修正算法[J]. 光子学报,2012,41(4):408-413. doi: 10.3788/gzxb20124104.0408

    NING Feng, ZHU Yong, CUI Haijun, et al. A linear correcting algorithm for improving space resolution of distributed optical fiber Raman temperature measurement system[J]. Acta Photonica Sinica,2012,41(4):408-413. doi: 10.3788/gzxb20124104.0408
    [17] BRIGGS M A, LAUTZ L K, MCKENZIE J M, et al. Using high-resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux[J]. Water Resources Research,2012,48(2):670-677.
  • 加载中
图(11)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  62
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-16
  • 修回日期:  2022-08-26
  • 网络出版日期:  2022-09-08
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回