Automated Measurement Setup of Laser-induced Damage Threshold and Its Experiment
-
摘要: 设计并搭建了一套1 064 nm、532 nm的双波长光学元件激光损伤阈值自动测量装置,用于光学元件膜层激光损伤阈值的自动化检测。装置主要由脉冲激光光源、光束参数诊断组件、损伤在线诊断组件、待测件扫描运动平台和控制系统组成。整个测量装置和测量过程由基于Labview编制的计算机综合测量软件自动控制,可实现损伤阈值在0.1 J/cm2~100 J/cm2能量密度范围内的自动测量,并利用该装置对1 064 nm增透膜和铝反射膜样品进行了测量,得到损伤阈值分别为27.09 J/cm2和3.21 J/cm2,相对不确定度分别为3.91%和5.61%。Abstract: An automated measurement setup of laser-induced damage threshold (LIDT) according to ISO 21254-1,2,3,4:2011 standards is presented. The main blocks of the setup, include pulse laser system, laser beam parameters measurement system, damage detection system, specimen holder and control system, are described. In order to control the LIDT measurements, software based on LabView programming package was created. Energy density of 0.1 J/cm2~100 J/cm2 is achieved. LIDT using the 1-on-1 test on 1064 nm AR coatings and Al reflective coatings on K9 substrates are respectively 27.09 J/cm2 and 3.21 J/cm2, relative measurement uncertainty are respectively 3.91% and 5.61%.
-
Key words:
- automated measurement /
- LIDT /
- 1-on-1 /
- energy density /
- relative measurement uncertainty
-
表 1 损伤阈值测量结果
Table 1 Measurement result of LIDT
波长/nm 样品名称 LIDT/(J/cm2) 1 on 1 100 on 1 R on 1 1 064 铝反射膜 3.21 —— 2.97 增透膜 27.09 —— 25.93 532 铝反射膜 0.56 —— 0.32 增透膜 6.42 4.55 6.38 表 2 能量密度不确定度分析
Table 2 Uncertainty analysis of laser energy density
测量不确定度 激光能量密度/% 激光能量计测量相对不确定度(u1) 1.25 分光比测量相对不确定度(u2) 0.18 光斑有效面积测量[16](u3) 1.1 能量密度计算相对合成不确定度(u4) 1.67 -
[1] 杨镜新, 庄亦飞, 沈卫星, 等. 激光光斑有效面积的准确测定[J]. 强激光与粒子束,2004,16(10):1263-1266.YANG Jingxin, ZHUANG Yifei, SHEN Weixing, et al. Precise measurement of the effective area of laser spot[J]. High Power Laser and Particle Beams,2004,16(10):1263-1266. [2] 刘志超, 郑轶, 吴倩, 单发大口径光束下介质膜损伤阈值测试[J]. 强激光与粒子束, 2015, 27(5): 052006-1-053006-6.LIU Zhichao, ZHEN Yi, WU Qian, Single-shot large beam laser induced damage threshold measurement on dielectric coatings[J]. High Power Laser and Particle Beams, 2015, 27(5): 052006-1-053006-6. [3] ALEXANDRU Z, LAURENTIU R, AUREL S, et al. Measuring the effective pulse duration of nanosecond and femtosecond laser pulses for laser-induced damage experiments[J], Optical Engineering, 2013, 52(5): 054203-1-054203-10. [4] Technical Committee ISO/TC 172, Laser and laser-related equipment—Test methods foe laser-induced damage threshold—Part1: Definitions and general principles ISO 21254-1: 2011[S]. International Organization for Standardization, Geneva, Switzerland (2011). [5] Technical Committee ISO/TC 172, Laser and laser-related equipment—Test methods foe laser-induced damage threshold—Part2: Threshold determination ISO 21254-2: 2011 [S]. International Organization for Standardization, Geneva, Switzerland (2011). [6] MELNINKAITIS A, MIKSYS D, BALCIUNAS T, et al. Automated test station for laser-induced damage threshold measurements according to ISO 11254-2 standard[J]. SPIE,2006,6101:61011J-1-61011J-10. [7] BINGELYTE V, SIRUTKAITIS V, ECKARDT R C. S on 1 induced damage thresholds of high-reflection metallic coatings at 1 064 nm[J]. SPIE,2003,4932:513-519. [8] GALLAIS L, NATOLI J. Optimized metrology for maser-damage measurement: application to multiparameter study[J]. Appl. Opt.,2003(42):960-971. [9] 胡建平, 马平, 许乔. 光学元件的激光损伤阈值测量[J]. 红外与激光工程,2006,35(2):187-191. doi: 10.3969/j.issn.1007-2276.2006.02.015HU Jianping, MA Ping, XU Qiao. Laser damage threshold measurement of the optical elements[J]. Infrared and Laser Engineering,2006,35(2):187-191. doi: 10.3969/j.issn.1007-2276.2006.02.015 [10] 周刚, 马彬, 焦宏飞, 等. 1 064 nm高反射薄膜激光损伤阈值测量方法[J]. 强激光与粒子束,2011,23(4):963-968. doi: 10.3788/HPLPB20112304.0963ZHOU Gang, MA Bin, JIAO Hongfei, et al. Laser damage threshold measurements of 1064nm high reflection mirrors[J]. High Power Laser and Particle Beams,2011,23(4):963-968. doi: 10.3788/HPLPB20112304.0963 [11] 刘志超, 卫耀伟, 陈松林. ALD氧化铝单层膜1 064 nm激光损伤特性研究[J]. 应用光学,2011,32(2):373-376. doi: 10.3969/j.issn.1002-2082.2011.02.036LIU Zhichao, WEI Yaowei, CHEN Shonglin, et al. Characterization of 1 064 nm laser induced damage in ALD optical film[J]. Journal of applied optics,2011,32(2):373-376. doi: 10.3969/j.issn.1002-2082.2011.02.036 [12] 胡建平. HfO2/SiO2光学薄膜激光损伤阈值的测量[J]. 光电子·激光,2002,13(4):356-358. doi: 10.3321/j.issn:1005-0086.2002.04.008HU Jianping. The measurement of laser damage threshold of hafnia/ silica multilayer coatings[J]. Journal of Optoelectronics Laser,2002,13(4):356-358. doi: 10.3321/j.issn:1005-0086.2002.04.008 [13] 李大伟, 赵元安, 贺洪波, 等. 光学元件激光损伤阈值的指数拟合法以及测试误差分析[J]. 中国激光,2008,35(2):273-275. doi: 10.3321/j.issn:0258-7025.2008.02.024LI Dawei, ZHAO Yuanan, HE Hongbo, et al. Exponential fitting of laser damage threshold and analysis of testing errors[J]. Chinese Journal of Lasers,2008,35(2):273-275. doi: 10.3321/j.issn:0258-7025.2008.02.024 [14] 史亚莉, 陶显, 周信达, 等. 光学元件激光损伤在线检测装置[J]. 红外与激光工程,2018,47(4):0417003-1-0417003-7. doi: 10.3788/IRLA201847.0417003SHI Yali, TAO Xian, ZHOU Xinda, et al. An online laser-induced flaw inspection device for optical elements[J]. Infrared and Laser Engineering,2018,47(4):0417003-1-0417003-7. doi: 10.3788/IRLA201847.0417003 [15] 中华人民共和国国家质量监督检验检疫总局. 激光器和激光相关设备 激光损伤阈值测试方法: GB/T 16601—2017[S]. 北京: 中国标准出版社, 2017. [16] Aurel Stratan, Alexandru Zorila, Laurentiu Rusen, et al. Measuring effective area of spots from pulsed laser beams[J]. Optical Engineering,2014,53(12):122513-1-122513-11. doi: 10.1117/1.OE.53.12.122513 [17] 叶德培. 测量不确定度[M]. 北京: 国防工业出版社, 1996: 19-20.YE Depei. Measurement uncertainty[M]. Beijing: Defence Industry Press, 1996: 19-20. -